Phương trình bậc hai một ẩn và công thức nghiệm

Câu 61 Trắc nghiệm

Tìm \(m\) để hai phương trình \({x^2} + mx + 1 = 0\) và \({x^2} + x + m = 0\) có ít nhất một nghiệm chung.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \({x_0}\) là nghiệm chung của hai phương trình thì \({x_0}\) phải thỏa mãn hai phương trình trên.

Thay \(x = {x_0}\) vào hai phương trình trên ta được \(\left\{ \begin{array}{l}{x_0}^2 + m{x_0} + 1 = 0\\{x_0}^2 + {x_0} + m = 0\end{array} \right.\) \( \Rightarrow (m - 1){x_0} + 1 - m = 0\) \(\Leftrightarrow (m - 1)(x_0-1) = 0\,(*)\)

Xét phương trình (*)

+) Nếu \(m = 1\) thì \(0 = 0\) (luôn đúng) hay hai phương trình trùng nhau.

Lúc này phương trình \({x^2} + x + 1 = 0\) vô nghiệm nên cả hai phương trình đều vô nghiệm.

Vậy \(m = 1\) không thỏa mãn.

+) Nếu \(m \ne 1\) thì \({x_0} = 1\).

Thay \({x_0} = 1\) vào phương trình \({x_0}^2 + m{x_0} + 1 = 0\) ta được \(m =  - 2\).

Vậy \(m =  - 2\) thì hai phương trình có nghiệm chung.

Câu 62 Trắc nghiệm

Cho hai phương trình \({x^2} - 13x + 2m = 0\) (1) và \({x^2} - 4x + m = 0\) (2). Xác định \(m\) để một nghiệm phương trình (1) gấp đôi \(1\)  nghiệm phương trình (2).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi nghiệm phương trình (2) là \({x_0}\left( {{x_0} \ne 0} \right)\) thì  nghiệm phương trình (1) là \(2{x_0}\).

Thay \({x_0},2{x_0}\) lần lượt vào phương trình (2) và (1) ta được \(\left\{ \begin{array}{l}{(2{x_0})^2} - 13.2{x_0} + 2m = 0\\{x_0}^2 - 4{x_0} + m = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4{x^2}_0 - 26{x_0} + 2m = 0\\{x_0}^2 - 4{x_0} + m = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4{x^2}_0 - 26{x_0} + 2m = 0\\4{x_0}^2 - 16{x_0} + 4m = 0\end{array} \right.\)\( \Leftrightarrow 10{x_0} =  - 2m\)\( \Leftrightarrow {x_0} =  - \dfrac{m}{5}\)

Do \({x_0} \ne 0\) nên \(m \ne 0\).

Thay \({x_0} =  - \dfrac{m}{5}\) vào phương trình (2) ta được \({\left( { - \dfrac{m}{5}} \right)^2} - 4.\left( { - \dfrac{m}{5}} \right) + m = 0\)

\( \Leftrightarrow \dfrac{{{m^2}}}{{25}} + \dfrac{{4m}}{5} + m = 0\)\( \Leftrightarrow \dfrac{{{m^2}}}{{25}} + \dfrac{{9m}}{5} = 0\)\( \Rightarrow \left[ \begin{array}{l}m = 0\\m =  - 45\end{array} \right.\)

Kết hợp \(m \ne 0\) ta được \(m =  - 45\)

Câu 63 Trắc nghiệm

Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2  - 23 = 0\,\,\,\left( 1 \right)\) và \(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2  - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương trình (1) có hai nghiệm \({\Delta _1} \ge 0\)

\(\begin{array}{l} \Leftrightarrow {\left( {2{m^2} + 1} \right)^2} - 4\left( {{m^3} + 7\sqrt 2  - 23} \right) \ge 0\\ \Leftrightarrow 4{m^4} + 4{m^2} + 1 - 4{m^3} - 28\sqrt 2  + 92 \ge 0\\ \Leftrightarrow 4{m^4} - 4{m^3} + 4{m^2} - 28\sqrt 2  + 93 \ge 0\,\,\,\,\,\left( * \right)\end{array}\)

Phương trình (2) có hai nghiệm \({\Delta _2} \ge 0\)

\(\begin{array}{l} \Leftrightarrow {\left( {{m^2} - m} \right)^2} - 8\left( {9\sqrt 2  - 30} \right) \ge 0\\ \Leftrightarrow {m^4} - 2{m^3} + {m^2} - 72\sqrt 2  + 240 \ge 0\,\,\,\left( {**} \right)\end{array}\)

Hai phương trình đã cho có nghiệm chung là \(x = 3\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}9 + \left( {2{m^2} + 1} \right).3 + {m^3} + 7\sqrt 2  - 23 = 0\\2.9 + \left( {{m^2} - m} \right).3 + 9\sqrt 2  - 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2  - 11 = 0\\3{m^2} - 3m + 9\sqrt 2  - 12 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2  - 11 = 0\,\,\,\,\left( 3 \right)\\{m^2} - m + 3\sqrt 2  - 4 = 0\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\end{array}\)

Giải phương trình (4) ta được:

\(\begin{array}{l}\left( 4 \right) \Leftrightarrow {m^2} - m = 4 - 3\sqrt 2 \\ \Leftrightarrow {m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4} = \dfrac{{17}}{4} - 3\sqrt 2 \\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{17 - 12\sqrt 2 }}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{9 - 2.3.2\sqrt 2  + 8}}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{{{\left( {3 - 2\sqrt 2 } \right)}^2}}}{4}\\ \Leftrightarrow \left[ \begin{array}{l}m - \dfrac{1}{2} = \dfrac{{3 - 2\sqrt 2 }}{2}\\m - \dfrac{1}{2} =  - \dfrac{{3 - 2\sqrt 2 }}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 2 - \sqrt 2 \,\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\\m = \sqrt 2  - 1\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\end{array} \right.\end{array}\)

+) Với \(m = 2 - \sqrt 2 \) ta có:

\(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {2 - \sqrt 2 } \right)^3} + 6{\left( {2 - \sqrt 2 } \right)^2} + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow 20 - 14\sqrt 2  + 6\left( {6 - 4\sqrt 2 } \right) + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow 9 - 7\sqrt 2  + 36 - 24\sqrt 2  = 0\\ \Leftrightarrow 45 - 31\sqrt 2  = 0\,\,\,\left( {ktm} \right)\end{array}\)

\( \Rightarrow m = 2 - \sqrt 2 \) không thỏa mãn bài toán.

+) Với \(m = \sqrt 2  - 1\) ta có:

\(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {\sqrt 2  - 1} \right)^3} + 6{\left( {\sqrt 2  - 1} \right)^2} + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow  - 7 + 5\sqrt 2  + 6\left( {3 - 2\sqrt 2 } \right) + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow  - 18 + 12\sqrt 2  + 18 - 12\sqrt 2  = 0\\ \Leftrightarrow 0 = 0\,\,\,\left( {tm} \right)\end{array}\)

\( \Rightarrow m = \sqrt 2  - 1\) thỏa mãn bài toán.

Vậy \(m = \sqrt 2  - 1\) thỏa mãn bài toán.

Câu 64 Trắc nghiệm

Phương trình sau có bao nhiêu nghiệm: \({(x - 1)^3} + {(2x + 3)^3} = 27{x^3} + 8\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\eqalign{& \,\,\,\,\,\,{(x - 1)^3} + {(2x + 3)^3} = 27{x^3} + 8  \cr &  \Leftrightarrow {x^3} - 3{x^2} + 3x - 1 + 8{x^3} + 36{x^2} + 54x + 27 = 27{x^3} + 8  \cr &  \Leftrightarrow 18{x^3} - 33{x^2} - 57x - 18 = 0  \cr &  \Leftrightarrow 3(6{x^3} - 11{x^2} - 19x - 6) = 0  \cr &  \Leftrightarrow 6{x^3} - 11{x^2} - 19x - 6 = 0  \cr &  \Leftrightarrow 6{x^3} - 18{x^2} + 7{x^2} - 21x + 2x - 6 = 0  \cr  &  \Leftrightarrow 6{x^2}(x - 3) + 7x(x - 3) + 2(x - 3) = 0  \cr &  \Leftrightarrow (x - 3)(6{x^2} + 7x + 2) = 0  \cr &  \Leftrightarrow \left[ \matrix{ x - 3 = 0 \hfill \cr 6{x^2} + 7x + 2 = 0 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{x = 3 \hfill \cr 6{x^2} + 7x + 2 = 0 \hfill \cr}  \right. \cr} \)

+) Giải phương trình:  \(6{x^2} + 7x + 2 = 0\)

Ta có : \(\Delta  = {( - 7)^2} - 4.6.2 = 1 > 0\) suy ra phương trình có hai nghiệm là:   \(\displaystyle {x_1} = {{ - 7 - \sqrt 1 } \over {2.6}} = {{ - 2} \over 3};\,\,\,\displaystyle {x_2} = {{ - 7 + \sqrt 1 } \over {2.6}} = {{ - 1} \over 2}.\)

Tập nghiệm của phương trình đã cho là  \(\displaystyle S = \left\{ {3;{{ - 2} \over 3};{{ - 1} \over 2}} \right\}.\)

Vậy phương trình đã cho có 3 nghiệm phân biệt.

Câu 65 Trắc nghiệm

Giải phương trình: \({x^2} + 3x - 1 = 0\). Ta được tập nghiệm là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương trình \({x^2} + 3x - 1 - 0\) có: \(\Delta  = {\left( { - 3} \right)^2} - 4.\left( { - 1} \right) = 13 > 0\)

\( \Rightarrow \) Phương trình có hai nghiệm phân biệt \({x_1} = \dfrac{{ - 3 + \sqrt {13} }}{2}\) và \({x_2} = \dfrac{{ - 3 - \sqrt {13} }}{2}.\)

Vậy phương trình có tập nghiệm: \(S = \left\{ {\dfrac{{ - 3 - \sqrt {13} }}{2};\,\,\dfrac{{ - 3 + \sqrt {13} }}{2}} \right\}.\)