Câu hỏi:
2 năm trước

Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2  - 23 = 0\,\,\,\left( 1 \right)\) và \(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2  - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

Trả lời bởi giáo viên

Đáp án đúng: d

Phương trình (1) có hai nghiệm \({\Delta _1} \ge 0\)

\(\begin{array}{l} \Leftrightarrow {\left( {2{m^2} + 1} \right)^2} - 4\left( {{m^3} + 7\sqrt 2  - 23} \right) \ge 0\\ \Leftrightarrow 4{m^4} + 4{m^2} + 1 - 4{m^3} - 28\sqrt 2  + 92 \ge 0\\ \Leftrightarrow 4{m^4} - 4{m^3} + 4{m^2} - 28\sqrt 2  + 93 \ge 0\,\,\,\,\,\left( * \right)\end{array}\)

Phương trình (2) có hai nghiệm \({\Delta _2} \ge 0\)

\(\begin{array}{l} \Leftrightarrow {\left( {{m^2} - m} \right)^2} - 8\left( {9\sqrt 2  - 30} \right) \ge 0\\ \Leftrightarrow {m^4} - 2{m^3} + {m^2} - 72\sqrt 2  + 240 \ge 0\,\,\,\left( {**} \right)\end{array}\)

Hai phương trình đã cho có nghiệm chung là \(x = 3\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}9 + \left( {2{m^2} + 1} \right).3 + {m^3} + 7\sqrt 2  - 23 = 0\\2.9 + \left( {{m^2} - m} \right).3 + 9\sqrt 2  - 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2  - 11 = 0\\3{m^2} - 3m + 9\sqrt 2  - 12 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2  - 11 = 0\,\,\,\,\left( 3 \right)\\{m^2} - m + 3\sqrt 2  - 4 = 0\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\end{array}\)

Giải phương trình (4) ta được:

\(\begin{array}{l}\left( 4 \right) \Leftrightarrow {m^2} - m = 4 - 3\sqrt 2 \\ \Leftrightarrow {m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4} = \dfrac{{17}}{4} - 3\sqrt 2 \\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{17 - 12\sqrt 2 }}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{9 - 2.3.2\sqrt 2  + 8}}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{{{\left( {3 - 2\sqrt 2 } \right)}^2}}}{4}\\ \Leftrightarrow \left[ \begin{array}{l}m - \dfrac{1}{2} = \dfrac{{3 - 2\sqrt 2 }}{2}\\m - \dfrac{1}{2} =  - \dfrac{{3 - 2\sqrt 2 }}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 2 - \sqrt 2 \,\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\\m = \sqrt 2  - 1\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\end{array} \right.\end{array}\)

+) Với \(m = 2 - \sqrt 2 \) ta có:

\(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {2 - \sqrt 2 } \right)^3} + 6{\left( {2 - \sqrt 2 } \right)^2} + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow 20 - 14\sqrt 2  + 6\left( {6 - 4\sqrt 2 } \right) + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow 9 - 7\sqrt 2  + 36 - 24\sqrt 2  = 0\\ \Leftrightarrow 45 - 31\sqrt 2  = 0\,\,\,\left( {ktm} \right)\end{array}\)

\( \Rightarrow m = 2 - \sqrt 2 \) không thỏa mãn bài toán.

+) Với \(m = \sqrt 2  - 1\) ta có:

\(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {\sqrt 2  - 1} \right)^3} + 6{\left( {\sqrt 2  - 1} \right)^2} + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow  - 7 + 5\sqrt 2  + 6\left( {3 - 2\sqrt 2 } \right) + 7\sqrt 2  - 11 = 0\\ \Leftrightarrow  - 18 + 12\sqrt 2  + 18 - 12\sqrt 2  = 0\\ \Leftrightarrow 0 = 0\,\,\,\left( {tm} \right)\end{array}\)

\( \Rightarrow m = \sqrt 2  - 1\) thỏa mãn bài toán.

Vậy \(m = \sqrt 2  - 1\) thỏa mãn bài toán.

Hướng dẫn giải:

Một số là nghiệm của phương trình thì thoả mãn phương trình.

Câu hỏi khác