Các dạng bài tập về phóng xạ

Câu 41 Trắc nghiệm

Một chất phóng xạ ban đầu có N0 hạt nhân. Sau 1 năm, còn lại một phần ba số hạt nhân ban đầu chưa phân rã. Sau 1 năm nữa, số hạt nhân còn lại chưa phân rã của chất phóng xạ đó là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

t1 = 1năm  thì số hạt nhân chưa phân rã (còn lại ) là N1, theo đề ta có : \[\frac{{{N_1}}}{{{N_0}}} = \frac{1}{{{2^{\frac{t}{T}}}}} = \frac{1}{3}\]

Sau 1năm nữa tức là t2 = 2t1  năm thì số hạt nhân còn lại chưa phân rã là N2,  ta có :

\[\frac{{{N_2}}}{{{N_0}}} = \frac{1}{{{2^{\frac{{{t_2}}}{T}}}}} = \frac{1}{{{2^{\frac{{2{t_1}}}{T}}}}}\] \[ \Leftrightarrow \]\[\frac{{{N_2}}}{{{N_0}}} = {\left( {\frac{1}{{{2^{\frac{t}{T}}}}}} \right)^2} = {\left( {\frac{1}{3}} \right)^2} = \frac{1}{9}\]

Câu 42 Trắc nghiệm

Một chất phóng xạ có chu kỳ bán rã là 3,8 ngày. Sau thời gian 11,4 ngày thì độ phóng xạ (hoạt độ phóng xạ) của lượng chất phóng xạ còn lại bằng bao nhiêu phần trăm so với độ phóng xạ của lượng chất phóng xạ ban đầu?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

 T = 3,8 ngày ; t = 11,4 = 3T ngày. Do đó ta đưa về hàm mũ để giải nhanh như sau :

  \(H = {H_0}{.2^{ - \dfrac{t}{T}}} \Leftrightarrow \dfrac{H}{{{H_0}}} = {2^{ - \dfrac{t}{T}}}\) \(\Leftrightarrow \) \(\dfrac{H}{{{H_0}}} = {2^{ - 3}} = \dfrac{1}{8}\) \(= 12,5\) %

Câu 43 Trắc nghiệm

Biểu thức xác định khối lượng hạt nhân đã phân rã trong thời gian t là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khối lượng hạt nhân đã phân rã: \(\Delta m{\rm{ }} = {m_0}(1 - {2^{ - \frac{t}{T}}}) = {m_0}\left( {1 - {e^{ - \lambda t}}} \right)\)

Câu 44 Trắc nghiệm

Số hạt nhân đã bị phân rã được xác định bằng biểu thức nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khối lượng hạt nhân đã phân rã: \(\Delta N{\rm{ }} = {N_0}(1 - {2^{ - \frac{t}{T}}}) = {N_0}\left( {1 - {e^{ - \lambda t}}} \right)\)

Câu 45 Trắc nghiệm

 \({}^{22}Na\) phân rã với chu kì T = 2,6 năm. Khối lượng ban đầu là m0. Sau 2 năm lượng \({}^{22}Na\) phân rã bao nhiêu %?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

t = 2 năm, T = 2,6 năm

Ta có: khối lượng hạt nhân đã phân rã: \(\Delta m{\rm{ }} = {m_0}(1 - {2^{ - \frac{t}{T}}}) \to \frac{{\Delta m}}{{{m_0}}} = 1 - {2^{ - \frac{t}{T}}} = 1 - {2^{ - \frac{2}{{2,6}}}} = 0,4133 = 41,33\% \)

Câu 46 Trắc nghiệm

Tính số hạt nhân bị phân rã sau 1s trong 1g Rađi \({}^{226}\)Ra . Cho biết chu kỳ bán rã của \({}^{226}\)Ra   là 1580 năm. Số Avôgađrô là NA = 6,02.1023 mol-1.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Số hạt nhân nguyên tử có trong 1 gam  226Ra là :

\(N_0=\dfrac{m}{A}.{N_A} = \dfrac{1}{{226}}.6,{022.10^{23}} = 2,{6646.10^{21}}\) hạt

Suy ra số hạt nhân nguyên tử Ra phân rã sau 1 s là :

\(\Delta N = {N_0}(1 - {2^{ - \dfrac{t}{T}}}) = 2,{6646.10^{21}}\left( {1 - {2^{ - \dfrac{1}{{1580.365.86400}}}}} \right) = 3,{70.10^{10}}\) hạt

Câu 47 Trắc nghiệm

Pôlôni \(^{210}Po\) là một chất phóng xạ có chu kì bán rã \(140\) ngày đêm. Hạt nhân pôlôni phóng xạ sẽ biến thành hạt nhân chì (\(^{206}Pb\)) và kèm theo một hạt a. Ban đầu có \(42 mg\) chất phóng xạ pôlôni. Khối lượng chì sinh ra sau \(280\) ngày đêm là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

\({m_{Pb}} = \dfrac{{\Delta {m_{Po}}}}{{{A_{Po}}}}.{A_{Pb}} \\= {m_0}\dfrac{{{A_{Pb}}}}{{{A_{Po}}}}(1 - {2^{\dfrac{t}{T}}}) \\= 42\dfrac{{206}}{{210}}(1 - {2^{ - \dfrac{{280}}{{140}}}}) = 30,9mg\)

Câu 48 Trắc nghiệm

Đồng vị  \({}_{11}^{24}\) Na là chất phóng xạ β- tạo thành hạt nhân magiê( \({}_{12}^{24}\)Mg). Ban đầu có 12gam Na và chu kì bán rã là 15 giờ. Sau 45 h thì khối lượng Mg tạo thành là :

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Nhận xét : t = 3T nên ta dùng hàm mũ 2 để giải cho nhanh bài toán :

- Khối lượng Na bị phân rã sau t = 45 giờ = 3T :

\(\begin{array}{l}\Delta m = {m_0}(1 - {2^{ - \dfrac{t}{T}}}) = 12(1 - {2^{ - 3}})\\ \leftrightarrow \Delta m{\rm{ }} = {\rm{ }}10,5{\rm{ }}g\end{array}\)

 - Suy ra khối lượng của Mg tạo thành : \({m_{con}} = \dfrac{{\Delta {m_{me}}.{A_{con}}}}{{{A_{me}}}} = \frac{{10,5}}{{24}}.24 = 10,5g\)

Câu 49 Trắc nghiệm

Phương trình phóng xạ của Pôlôni có dạng:\({}_{84}^{210}Po\)\( \to {}_Z^APb + \alpha \).Cho chu kỳ bán rã của Pôlôni T=138 ngày. Khối lượng ban đầu m0=1g. Hỏi sau bao lâu khối lượng Pôlôni chỉ còn 0,707g?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tính t: \(\frac{m}{{{m_0}}} = {e^{ - \lambda .t}} \to t = \frac{{T.\ln \frac{{{m_0}}}{m}}}{{\ln 2}} = \frac{{138.\ln \frac{1}{{0,707}}}}{{\ln 2}}\) =69ngày

Câu 50 Trắc nghiệm

Một lượng chất phóng xạ sau 12 năm thì còn lại 1/16 khối lượng ban đầu của nó. Chu kì bán rã của chất đó là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\frac{m}{{{m_0}}}\)=\(\frac{1}{{{2^{\frac{t}{T}}}}}\)=\(\frac{1}{{16}} = \frac{1}{{{2^4}}}\) 

\( \to \frac{t}{T} = 4 \Rightarrow T = \frac{t}{4} = \frac{{12}}{4} = 3\)  năm

Câu 51 Trắc nghiệm

Một đồng vị phóng xạ có chu kì bán rã T. Cứ sau một khoảng thời gian bằng bao nhiêu thì số hạt nhân bị phân rã trong khoảng thời gian đó bằng ba lần số hạt nhân còn lại của đồng vị ấy

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Theo đề , ta có :\(\Delta N = 3N\)

\(\dfrac{{\Delta N}}{N} = \dfrac{{{N_0}\left( {1 - {2^{ - \dfrac{t}{T}}}} \right)}}{{{N_0}{{.2}^{ - \dfrac{t}{T}}}}} = 3 \Leftrightarrow {2^{\dfrac{t}{T}}} - 1 = 3 \Leftrightarrow {2^{\dfrac{t}{T}}} = 4 \Leftrightarrow t = 2T\) 

Câu 52 Trắc nghiệm

\(_{11}^{24}Na\) là chất phóng xạ \({\beta ^ - }\) với chu kỳ bán rã 15 giờ. Ban đầu có một lượng \(_{11}^{24}Na\) thì sau một khoảng thời gian bao nhiêu lượng chất phóng xạ trên bị phân rã 75%?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi m0 là khối lượng ban đầu của \(_{11}^{24}Na\)

Khối lượng chất phóng xạ đã bị phân rã:

\(\Delta m = {m_0}(1 - {2^{ - \frac{t}{T}}})\)

Theo đầu bài, ta có: ∆m=0,75m0

\( \to \dfrac{{\Delta m}}{{{m_0}}} = (1 - {2^{ - \dfrac{t}{T}}}) = 0,75 \to {2^{ - \dfrac{t}{T}}} = \dfrac{1}{4} \to \dfrac{t}{T} = 2 \to t = 2T = 30h00\)

Câu 53 Trắc nghiệm

Một lượng chất phóng xạ \({}_{86}^{222}Rn\) ban đầu có khối lượng 1mg. Sau 15,2 ngày độ phóng xạ giảm 93,75%. Chu kỳ bán rã của Rn là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: t = 15,2 ngày

Độ phóng xạ còn lại: H = 1-0,9375 = 0,0625

\(H = {H_0}{2^{ - \frac{t}{T}}} \to \frac{H}{{{H_0}}} = {2^{ - \frac{t}{T}}} = 0,0625 = \frac{1}{{16}} \to \frac{t}{T} = 4 \to T = \frac{t}{4} = \frac{{15,2}}{4} = 3,8{\rm{ }}ngày\)

Câu 54 Trắc nghiệm

Hạt nhân A (có khối lượng mA) đứng yên phóng xạ thành hạt B (có khối lượng mB) và C (có khối lượng mC) theo phương trình \(A \to B + C\). Nếu phản ứng tỏa năng lượng ∆E thì động năng của B là:

 

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

A phân rã => B + C  

\(\left\{ \begin{array}{l}\overrightarrow {{P_t}}  = \overrightarrow {{P_s}} \\{m_A}{c^2} = \left( {{m_B} + {m_C}} \right){c^2} + {{\rm{W}}_{{d_B}}} + {{\rm{W}}_{{d_C}}}\end{array} \right. \leftrightarrow \left\{ \begin{array}{l}0 = {m_B}\overrightarrow {{v_B}}  + {m_C}\overrightarrow {{v_C}} \\\Delta E{\rm{ = }}{{\rm{W}}_{{d_B}}} + {{\rm{W}}_{{d_C}}}\end{array} \right. \to \left\{ \begin{array}{l}{{\rm{W}}_{{d_B}}} = \frac{{{m_C}}}{{{m_B} + {m_C}}}\Delta E\\{{\rm{W}}_{{d_C}}} = \frac{{{m_B}}}{{{m_B} + {m_C}}}\Delta E\end{array} \right.\)

Câu 55 Trắc nghiệm

Hạt nhân \(A\) đang đứng yên thì phân rã thành hạt nhân \(B\) có khối lượng \(m_B\) và hạt $\alpha $ có khối lượng \(m_{\alpha}\). Tỉ số giữa động năng của hạt $\alpha $ và động năng của hạt nhân \(B\) ngay sau phân rã bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(A\) phân rã => \(B\) + \(\alpha\)

áp dụng định luật bảo toàn động lượng, ta có:

\(\begin{array}{l}\overrightarrow {{P_t}}  = \overrightarrow {{P_s}}  \leftrightarrow 0 = {m_B}\overrightarrow {{v_B}}  + {m_\alpha }\overrightarrow {{v_\alpha }} \\ \to {m_B}\overrightarrow {{v_B}}  =  - {m_\alpha }\overrightarrow {{v_\alpha }} \end{array}\)

Mặt khác, ta có: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2} = \dfrac{{{P^2}}}{{2m}}\)

\(\begin{array}{l} \to P_B^2 = P_\alpha ^2 \leftrightarrow 2{m_B}{{\rm{W}}_{{d_B}}} = 2{m_\alpha }{{\rm{W}}_{{d_\alpha }}}\\\dfrac{{{{\rm{W}}_{{d_\alpha }}}}}{{{{\rm{W}}_{{d_B}}}}} = \dfrac{{{m_B}}}{{{m_\alpha }}}\end{array}\) 

Câu 56 Trắc nghiệm

Chất phóng xạ \({}_{84}^{210}Po\) phát ra tia α và biến đổi thành \({}_{82}^{206}Pb\). Biết khối lượng các hạt là mPb = 205,9744u, mPo = 209,9828u, mα = 4,0026u. Giả sử hạt nhân mẹ ban đầu đứng yên và sự phân rã không phát ra tia γ thì động năng của hạt nhân con là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\[{}_{84}^{210}Po \to {}_{82}^{206}Pb + \alpha \]

Năng lượng tỏa ra:

\(\begin{array}{l}\Delta E = \left( {\sum {m{}_{trc} - \sum {{m_{sau}}} } } \right){c^2} = \left( {{m_{Po}} - \left( {{m_{Pb}} + {m_\alpha }} \right)} \right){c^2}\\ = \left( {209,9828u - (205,9744u + 4,0026u)} \right){c^2} = 5,{8.10^{ - 3}}u{c^2} = 5,4027MeV\end{array}\)

Động năng của hạt nhân Pb sau phân rã:

\({{\rm{W}}_{{d_{Pb}}}} = \dfrac{{{m_\alpha }}}{{{m_{Pb}} + {m_\alpha }}}\Delta E = \dfrac{{4,0026u}}{{205,9744u + 4,0026u}}5,4027MeV = 0,103MeV\) 

Câu 57 Trắc nghiệm

Một hạt nhân X, ban đầu đứng yên, phóng xạ α và biến thành hạt nhân Y. Biết hạt nhân X có số khối là A, hạt α phát ra tốc độ v. Lấy khối lượng của hạt nhân bằng số khối của nó tính theo đơn vị u. Tốc độ của hạt nhân Y bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(_Z^AX \to _2^4\alpha  + _{Z - 2}^{A - 4}Y\) 

Áp dụng định luật bảo toàn động lượng, ta có:

\(\begin{array}{l}0 = {m_Y}\overrightarrow {{v_Y}}  + {m_\alpha }\overrightarrow {{v_\alpha }}  \to {m_Y}\overrightarrow {{v_Y}}  =  - {m_\alpha }\overrightarrow {{v_\alpha }} \\ \to {v_Y} = \frac{{{m_\alpha }{v_\alpha }}}{{{m_Y}}} = \frac{{4v}}{{A - 4}}\end{array}\) 

Câu 58 Trắc nghiệm

\(_{92}^{235}U + _0^1n \to _{42}^{95}Mo + _{57}^{139}La + 2_0^1n + 7{e^ - }\) là một phản ứng phân  hạch của Urani 235. Biết khối lượng hạt nhân : \({m_U} = {\rm{ }}234,99{\rm{ }}u\) ; \({m_{Mo}} = {\rm{ }}94,88{\rm{ }}u\) ;\({m_{La}} = {\rm{ }}138,87{\rm{ }}u\) ;\({m_n} = {\rm{ }}1,0087{\rm{ }}u\). Cho năng suất toả nhiệt của xăng là \({46.10^6}J/kg\).  Khối lượng xăng cần dùng để có thể toả năng lượng tương đương với 1 gam U phân hạch ? Lấy \(1u{c^2} = 931MeV\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có:

\({m_U} = {\rm{ }}234,99{\rm{ }}u\)

\({m_{M0}} = {\rm{ }}94,88{\rm{ }}u\)

\({m_{La}} = {\rm{ }}138,87{\rm{ }}u\)

\({m_n} = {\rm{ }}1,0087{\rm{ }}u\)

\(q{\rm{ }} = {\rm{ }}{46.10^6}J/kg\)

Số hạt nhân nguyên tử  235U trong  \(1g{\rm{ }}U\) là :

\(N = \dfrac{{{m_A}}}{A}.{N_A} = \dfrac{1}{{235}}.6,{02.10^{23}} = {\rm{ }}2,{5617.10^{21}}\)  hạt

Năng lượng toả ra khi giải phóng hoàn toàn 1 hạt nhân  U phân hạch là:

\(\begin{array}{l}\Delta E = \left( {{M_0} - M} \right){c^2}\\ = \left[ {\left( {{m_U} + {m_n}} \right) - \left( {{m_{Mo}} + {m_{La}} + 2{m_n}} \right)} \right]{c^2}\\ = \left[ {\left( {234,99u + 1,0087u} \right) - \left( {94,88u + 138,87u + 2.1,0087u} \right)} \right]{c^2}\\ = 0,2313u{c^2} = 215,3403MeV\end{array}\)

Năng lượng khi 1 gam U phản ứng phân hạch :

\(\begin{array}{l}E = \Delta E.N = 215,3403.2,{5617.10^{21}}\\ = 5,{5164.10^{23}}MeV = 8,{826.10^{10}}J\end{array}\)

Khối lượng xăng cần dùng để có năng lượng tương đương    

\(m = \dfrac{{\Delta E}}{{{{46.10}^6}}} = \dfrac{{8,{{826.10}^{10}}}}{{{{46.10}^6}}} \approx 1919kg\)

Câu 59 Trắc nghiệm

Hiện nay trong quặng thiên nhiên có chứa cả \(_{92}^{238}U\)  và \(_{92}^{235}U\) theo tỉ lệ nguyên tử  là 140 :1. Giả sử ở thời điểm tạo thành Trái Đất, tỷ lệ trên là 1:1. Hãy tính tuổi của Trái Đất. Biết chu kỳ bán rã của \(_{92}^{238}U\) là 4,5.109 năm, \(_{92}^{235}U\)  có chu kỳ bán rã 7,13.108 năm.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi N0 là số nguyên tử của U238 và cũng là số nguyên tử của U235 ở thời điểm tạo thành trái đất.

Số nguyên tử của chúng tại thời điểm t: \({N_1} = {N_0}{2^{ - \frac{t}{{{T_1}}}}};{N_2} = {N_0}{2^{ - \frac{t}{{{T_2}}}}}\) 

Theo đầu bài, ta có:

\(\begin{array}{l}\frac{{{N_1}}}{{{N_2}}} = 140 = \frac{{{2^{ - \frac{t}{{{T_1}}}}}}}{{{2^{ - \frac{t}{{{T_2}}}}}}} = {2^{\frac{t}{{{T_2}}} - \frac{t}{{{T_1}}}}} = 140 \to \frac{t}{{{T_2}}} - \frac{t}{{{T_1}}} = \log _2^{140} = 7,13\\ \to t\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right) = 7,13 \to t = 60,{4.10^8}\end{array}\) 

Câu 60 Trắc nghiệm

Trong phòng thí nghiệm, người ta tiến hành xác định chu kì bán rã \(T\) của một chất phóng xạ bằng cách dùng máy đếm xung để đo tỉ lệ giữa số hạt bị phân rã \({\rm{\Delta N}}\) và số hạt ban đầu \({{\rm{N}}_{\rm{0}}}{\rm{.}}\) Dựa vào kết quả thực nghiệm đo được trên đồ thị hãy tính chu kì bán rã của chất phóng xạ này?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \(N = {N_0}{e^{ - \lambda t}} \Rightarrow \)Số hạt bị phân rã là:

\(\Delta N = {N_0} - {N_0}{e^{ - \lambda t}} = {N_0}(1 - {e^{ - \lambda t}})\)

\( \Rightarrow \dfrac{{\Delta N}}{{{N_0}}} = 1 - {e^{ - \lambda t}} \Rightarrow 1 - \dfrac{{\Delta N}}{{{N_0}}} = {e^{ - \lambda t}}\)

\( \Rightarrow \dfrac{1}{{\left( {1 - \dfrac{{\Delta N}}{{{N_0}}}} \right)}} = {e^{\lambda t}} \Rightarrow \ln {\left( {1 - \dfrac{{\Delta N}}{{{N_0}}}} \right)^{ - 1}} = \lambda t\)

 Từ đồ thị ta thấy \(\lambda  \approx 0,078\)

\( \Rightarrow T = \dfrac{{\ln 2}}{\lambda } \approx 8,9\) (ngày)