Một chất phóng xạ ban đầu có N0 hạt nhân. Sau 1 năm, còn lại một phần ba số hạt nhân ban đầu chưa phân rã. Sau 1 năm nữa, số hạt nhân còn lại chưa phân rã của chất phóng xạ đó là:
t1 = 1năm thì số hạt nhân chưa phân rã (còn lại ) là N1, theo đề ta có : \[\frac{{{N_1}}}{{{N_0}}} = \frac{1}{{{2^{\frac{t}{T}}}}} = \frac{1}{3}\]
Sau 1năm nữa tức là t2 = 2t1 năm thì số hạt nhân còn lại chưa phân rã là N2, ta có :
\[\frac{{{N_2}}}{{{N_0}}} = \frac{1}{{{2^{\frac{{{t_2}}}{T}}}}} = \frac{1}{{{2^{\frac{{2{t_1}}}{T}}}}}\] \[ \Leftrightarrow \]\[\frac{{{N_2}}}{{{N_0}}} = {\left( {\frac{1}{{{2^{\frac{t}{T}}}}}} \right)^2} = {\left( {\frac{1}{3}} \right)^2} = \frac{1}{9}\]
Một chất phóng xạ có chu kỳ bán rã là 3,8 ngày. Sau thời gian 11,4 ngày thì độ phóng xạ (hoạt độ phóng xạ) của lượng chất phóng xạ còn lại bằng bao nhiêu phần trăm so với độ phóng xạ của lượng chất phóng xạ ban đầu?
T = 3,8 ngày ; t = 11,4 = 3T ngày. Do đó ta đưa về hàm mũ để giải nhanh như sau :
\(H = {H_0}{.2^{ - \dfrac{t}{T}}} \Leftrightarrow \dfrac{H}{{{H_0}}} = {2^{ - \dfrac{t}{T}}}\) \(\Leftrightarrow \) \(\dfrac{H}{{{H_0}}} = {2^{ - 3}} = \dfrac{1}{8}\) \(= 12,5\) %
Biểu thức xác định khối lượng hạt nhân đã phân rã trong thời gian t là:
Khối lượng hạt nhân đã phân rã: \(\Delta m{\rm{ }} = {m_0}(1 - {2^{ - \frac{t}{T}}}) = {m_0}\left( {1 - {e^{ - \lambda t}}} \right)\)
Số hạt nhân đã bị phân rã được xác định bằng biểu thức nào dưới đây?
Khối lượng hạt nhân đã phân rã: \(\Delta N{\rm{ }} = {N_0}(1 - {2^{ - \frac{t}{T}}}) = {N_0}\left( {1 - {e^{ - \lambda t}}} \right)\)
\({}^{22}Na\) phân rã với chu kì T = 2,6 năm. Khối lượng ban đầu là m0. Sau 2 năm lượng \({}^{22}Na\) phân rã bao nhiêu %?
t = 2 năm, T = 2,6 năm
Ta có: khối lượng hạt nhân đã phân rã: \(\Delta m{\rm{ }} = {m_0}(1 - {2^{ - \frac{t}{T}}}) \to \frac{{\Delta m}}{{{m_0}}} = 1 - {2^{ - \frac{t}{T}}} = 1 - {2^{ - \frac{2}{{2,6}}}} = 0,4133 = 41,33\% \)
Tính số hạt nhân bị phân rã sau 1s trong 1g Rađi \({}^{226}\)Ra . Cho biết chu kỳ bán rã của \({}^{226}\)Ra là 1580 năm. Số Avôgađrô là NA = 6,02.1023 mol-1.
Số hạt nhân nguyên tử có trong 1 gam 226Ra là :
\(N_0=\dfrac{m}{A}.{N_A} = \dfrac{1}{{226}}.6,{022.10^{23}} = 2,{6646.10^{21}}\) hạt
Suy ra số hạt nhân nguyên tử Ra phân rã sau 1 s là :
\(\Delta N = {N_0}(1 - {2^{ - \dfrac{t}{T}}}) = 2,{6646.10^{21}}\left( {1 - {2^{ - \dfrac{1}{{1580.365.86400}}}}} \right) = 3,{70.10^{10}}\) hạt
Pôlôni \(^{210}Po\) là một chất phóng xạ có chu kì bán rã \(140\) ngày đêm. Hạt nhân pôlôni phóng xạ sẽ biến thành hạt nhân chì (\(^{206}Pb\)) và kèm theo một hạt a. Ban đầu có \(42 mg\) chất phóng xạ pôlôni. Khối lượng chì sinh ra sau \(280\) ngày đêm là:
Ta có:
\({m_{Pb}} = \dfrac{{\Delta {m_{Po}}}}{{{A_{Po}}}}.{A_{Pb}} \\= {m_0}\dfrac{{{A_{Pb}}}}{{{A_{Po}}}}(1 - {2^{\dfrac{t}{T}}}) \\= 42\dfrac{{206}}{{210}}(1 - {2^{ - \dfrac{{280}}{{140}}}}) = 30,9mg\)
Đồng vị \({}_{11}^{24}\) Na là chất phóng xạ β- tạo thành hạt nhân magiê( \({}_{12}^{24}\)Mg). Ban đầu có 12gam Na và chu kì bán rã là 15 giờ. Sau 45 h thì khối lượng Mg tạo thành là :
Nhận xét : t = 3T nên ta dùng hàm mũ 2 để giải cho nhanh bài toán :
- Khối lượng Na bị phân rã sau t = 45 giờ = 3T :
\(\begin{array}{l}\Delta m = {m_0}(1 - {2^{ - \dfrac{t}{T}}}) = 12(1 - {2^{ - 3}})\\ \leftrightarrow \Delta m{\rm{ }} = {\rm{ }}10,5{\rm{ }}g\end{array}\)
- Suy ra khối lượng của Mg tạo thành : \({m_{con}} = \dfrac{{\Delta {m_{me}}.{A_{con}}}}{{{A_{me}}}} = \frac{{10,5}}{{24}}.24 = 10,5g\)
Phương trình phóng xạ của Pôlôni có dạng:\({}_{84}^{210}Po\)\( \to {}_Z^APb + \alpha \).Cho chu kỳ bán rã của Pôlôni T=138 ngày. Khối lượng ban đầu m0=1g. Hỏi sau bao lâu khối lượng Pôlôni chỉ còn 0,707g?
Tính t: \(\frac{m}{{{m_0}}} = {e^{ - \lambda .t}} \to t = \frac{{T.\ln \frac{{{m_0}}}{m}}}{{\ln 2}} = \frac{{138.\ln \frac{1}{{0,707}}}}{{\ln 2}}\) =69ngày
Một lượng chất phóng xạ sau 12 năm thì còn lại 1/16 khối lượng ban đầu của nó. Chu kì bán rã của chất đó là
Ta có \(\frac{m}{{{m_0}}}\)=\(\frac{1}{{{2^{\frac{t}{T}}}}}\)=\(\frac{1}{{16}} = \frac{1}{{{2^4}}}\)
\( \to \frac{t}{T} = 4 \Rightarrow T = \frac{t}{4} = \frac{{12}}{4} = 3\) năm
Một đồng vị phóng xạ có chu kì bán rã T. Cứ sau một khoảng thời gian bằng bao nhiêu thì số hạt nhân bị phân rã trong khoảng thời gian đó bằng ba lần số hạt nhân còn lại của đồng vị ấy
Theo đề , ta có :\(\Delta N = 3N\)
\(\dfrac{{\Delta N}}{N} = \dfrac{{{N_0}\left( {1 - {2^{ - \dfrac{t}{T}}}} \right)}}{{{N_0}{{.2}^{ - \dfrac{t}{T}}}}} = 3 \Leftrightarrow {2^{\dfrac{t}{T}}} - 1 = 3 \Leftrightarrow {2^{\dfrac{t}{T}}} = 4 \Leftrightarrow t = 2T\)
\(_{11}^{24}Na\) là chất phóng xạ \({\beta ^ - }\) với chu kỳ bán rã 15 giờ. Ban đầu có một lượng \(_{11}^{24}Na\) thì sau một khoảng thời gian bao nhiêu lượng chất phóng xạ trên bị phân rã 75%?
Gọi m0 là khối lượng ban đầu của \(_{11}^{24}Na\)
Khối lượng chất phóng xạ đã bị phân rã:
\(\Delta m = {m_0}(1 - {2^{ - \frac{t}{T}}})\)
Theo đầu bài, ta có: ∆m=0,75m0
\( \to \dfrac{{\Delta m}}{{{m_0}}} = (1 - {2^{ - \dfrac{t}{T}}}) = 0,75 \to {2^{ - \dfrac{t}{T}}} = \dfrac{1}{4} \to \dfrac{t}{T} = 2 \to t = 2T = 30h00\)
Một lượng chất phóng xạ \({}_{86}^{222}Rn\) ban đầu có khối lượng 1mg. Sau 15,2 ngày độ phóng xạ giảm 93,75%. Chu kỳ bán rã của Rn là:
Ta có: t = 15,2 ngày
Độ phóng xạ còn lại: H = 1-0,9375 = 0,0625
\(H = {H_0}{2^{ - \frac{t}{T}}} \to \frac{H}{{{H_0}}} = {2^{ - \frac{t}{T}}} = 0,0625 = \frac{1}{{16}} \to \frac{t}{T} = 4 \to T = \frac{t}{4} = \frac{{15,2}}{4} = 3,8{\rm{ }}ngày\)
Hạt nhân A (có khối lượng mA) đứng yên phóng xạ thành hạt B (có khối lượng mB) và C (có khối lượng mC) theo phương trình \(A \to B + C\). Nếu phản ứng tỏa năng lượng ∆E thì động năng của B là:
A phân rã => B + C
\(\left\{ \begin{array}{l}\overrightarrow {{P_t}} = \overrightarrow {{P_s}} \\{m_A}{c^2} = \left( {{m_B} + {m_C}} \right){c^2} + {{\rm{W}}_{{d_B}}} + {{\rm{W}}_{{d_C}}}\end{array} \right. \leftrightarrow \left\{ \begin{array}{l}0 = {m_B}\overrightarrow {{v_B}} + {m_C}\overrightarrow {{v_C}} \\\Delta E{\rm{ = }}{{\rm{W}}_{{d_B}}} + {{\rm{W}}_{{d_C}}}\end{array} \right. \to \left\{ \begin{array}{l}{{\rm{W}}_{{d_B}}} = \frac{{{m_C}}}{{{m_B} + {m_C}}}\Delta E\\{{\rm{W}}_{{d_C}}} = \frac{{{m_B}}}{{{m_B} + {m_C}}}\Delta E\end{array} \right.\)
Hạt nhân \(A\) đang đứng yên thì phân rã thành hạt nhân \(B\) có khối lượng \(m_B\) và hạt $\alpha $ có khối lượng \(m_{\alpha}\). Tỉ số giữa động năng của hạt $\alpha $ và động năng của hạt nhân \(B\) ngay sau phân rã bằng:
\(A\) phân rã => \(B\) + \(\alpha\)
áp dụng định luật bảo toàn động lượng, ta có:
\(\begin{array}{l}\overrightarrow {{P_t}} = \overrightarrow {{P_s}} \leftrightarrow 0 = {m_B}\overrightarrow {{v_B}} + {m_\alpha }\overrightarrow {{v_\alpha }} \\ \to {m_B}\overrightarrow {{v_B}} = - {m_\alpha }\overrightarrow {{v_\alpha }} \end{array}\)
Mặt khác, ta có: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2} = \dfrac{{{P^2}}}{{2m}}\)
\(\begin{array}{l} \to P_B^2 = P_\alpha ^2 \leftrightarrow 2{m_B}{{\rm{W}}_{{d_B}}} = 2{m_\alpha }{{\rm{W}}_{{d_\alpha }}}\\\dfrac{{{{\rm{W}}_{{d_\alpha }}}}}{{{{\rm{W}}_{{d_B}}}}} = \dfrac{{{m_B}}}{{{m_\alpha }}}\end{array}\)
Chất phóng xạ \({}_{84}^{210}Po\) phát ra tia α và biến đổi thành \({}_{82}^{206}Pb\). Biết khối lượng các hạt là mPb = 205,9744u, mPo = 209,9828u, mα = 4,0026u. Giả sử hạt nhân mẹ ban đầu đứng yên và sự phân rã không phát ra tia γ thì động năng của hạt nhân con là:
\[{}_{84}^{210}Po \to {}_{82}^{206}Pb + \alpha \]
Năng lượng tỏa ra:
\(\begin{array}{l}\Delta E = \left( {\sum {m{}_{trc} - \sum {{m_{sau}}} } } \right){c^2} = \left( {{m_{Po}} - \left( {{m_{Pb}} + {m_\alpha }} \right)} \right){c^2}\\ = \left( {209,9828u - (205,9744u + 4,0026u)} \right){c^2} = 5,{8.10^{ - 3}}u{c^2} = 5,4027MeV\end{array}\)
Động năng của hạt nhân Pb sau phân rã:
\({{\rm{W}}_{{d_{Pb}}}} = \dfrac{{{m_\alpha }}}{{{m_{Pb}} + {m_\alpha }}}\Delta E = \dfrac{{4,0026u}}{{205,9744u + 4,0026u}}5,4027MeV = 0,103MeV\)
Một hạt nhân X, ban đầu đứng yên, phóng xạ α và biến thành hạt nhân Y. Biết hạt nhân X có số khối là A, hạt α phát ra tốc độ v. Lấy khối lượng của hạt nhân bằng số khối của nó tính theo đơn vị u. Tốc độ của hạt nhân Y bằng:
\(_Z^AX \to _2^4\alpha + _{Z - 2}^{A - 4}Y\)
Áp dụng định luật bảo toàn động lượng, ta có:
\(\begin{array}{l}0 = {m_Y}\overrightarrow {{v_Y}} + {m_\alpha }\overrightarrow {{v_\alpha }} \to {m_Y}\overrightarrow {{v_Y}} = - {m_\alpha }\overrightarrow {{v_\alpha }} \\ \to {v_Y} = \frac{{{m_\alpha }{v_\alpha }}}{{{m_Y}}} = \frac{{4v}}{{A - 4}}\end{array}\)
\(_{92}^{235}U + _0^1n \to _{42}^{95}Mo + _{57}^{139}La + 2_0^1n + 7{e^ - }\) là một phản ứng phân hạch của Urani 235. Biết khối lượng hạt nhân : \({m_U} = {\rm{ }}234,99{\rm{ }}u\) ; \({m_{Mo}} = {\rm{ }}94,88{\rm{ }}u\) ;\({m_{La}} = {\rm{ }}138,87{\rm{ }}u\) ;\({m_n} = {\rm{ }}1,0087{\rm{ }}u\). Cho năng suất toả nhiệt của xăng là \({46.10^6}J/kg\). Khối lượng xăng cần dùng để có thể toả năng lượng tương đương với 1 gam U phân hạch ? Lấy \(1u{c^2} = 931MeV\)
Ta có:
\({m_U} = {\rm{ }}234,99{\rm{ }}u\)
\({m_{M0}} = {\rm{ }}94,88{\rm{ }}u\)
\({m_{La}} = {\rm{ }}138,87{\rm{ }}u\)
\({m_n} = {\rm{ }}1,0087{\rm{ }}u\)
\(q{\rm{ }} = {\rm{ }}{46.10^6}J/kg\)
Số hạt nhân nguyên tử 235U trong \(1g{\rm{ }}U\) là :
\(N = \dfrac{{{m_A}}}{A}.{N_A} = \dfrac{1}{{235}}.6,{02.10^{23}} = {\rm{ }}2,{5617.10^{21}}\) hạt
Năng lượng toả ra khi giải phóng hoàn toàn 1 hạt nhân U phân hạch là:
\(\begin{array}{l}\Delta E = \left( {{M_0} - M} \right){c^2}\\ = \left[ {\left( {{m_U} + {m_n}} \right) - \left( {{m_{Mo}} + {m_{La}} + 2{m_n}} \right)} \right]{c^2}\\ = \left[ {\left( {234,99u + 1,0087u} \right) - \left( {94,88u + 138,87u + 2.1,0087u} \right)} \right]{c^2}\\ = 0,2313u{c^2} = 215,3403MeV\end{array}\)
Năng lượng khi 1 gam U phản ứng phân hạch :
\(\begin{array}{l}E = \Delta E.N = 215,3403.2,{5617.10^{21}}\\ = 5,{5164.10^{23}}MeV = 8,{826.10^{10}}J\end{array}\)
Khối lượng xăng cần dùng để có năng lượng tương đương
\(m = \dfrac{{\Delta E}}{{{{46.10}^6}}} = \dfrac{{8,{{826.10}^{10}}}}{{{{46.10}^6}}} \approx 1919kg\)
Hiện nay trong quặng thiên nhiên có chứa cả \(_{92}^{238}U\) và \(_{92}^{235}U\) theo tỉ lệ nguyên tử là 140 :1. Giả sử ở thời điểm tạo thành Trái Đất, tỷ lệ trên là 1:1. Hãy tính tuổi của Trái Đất. Biết chu kỳ bán rã của \(_{92}^{238}U\) là 4,5.109 năm, \(_{92}^{235}U\) có chu kỳ bán rã 7,13.108 năm.
Gọi N0 là số nguyên tử của U238 và cũng là số nguyên tử của U235 ở thời điểm tạo thành trái đất.
Số nguyên tử của chúng tại thời điểm t: \({N_1} = {N_0}{2^{ - \frac{t}{{{T_1}}}}};{N_2} = {N_0}{2^{ - \frac{t}{{{T_2}}}}}\)
Theo đầu bài, ta có:
\(\begin{array}{l}\frac{{{N_1}}}{{{N_2}}} = 140 = \frac{{{2^{ - \frac{t}{{{T_1}}}}}}}{{{2^{ - \frac{t}{{{T_2}}}}}}} = {2^{\frac{t}{{{T_2}}} - \frac{t}{{{T_1}}}}} = 140 \to \frac{t}{{{T_2}}} - \frac{t}{{{T_1}}} = \log _2^{140} = 7,13\\ \to t\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right) = 7,13 \to t = 60,{4.10^8}\end{array}\)
Trong phòng thí nghiệm, người ta tiến hành xác định chu kì bán rã \(T\) của một chất phóng xạ bằng cách dùng máy đếm xung để đo tỉ lệ giữa số hạt bị phân rã \({\rm{\Delta N}}\) và số hạt ban đầu \({{\rm{N}}_{\rm{0}}}{\rm{.}}\) Dựa vào kết quả thực nghiệm đo được trên đồ thị hãy tính chu kì bán rã của chất phóng xạ này?
Ta có: \(N = {N_0}{e^{ - \lambda t}} \Rightarrow \)Số hạt bị phân rã là:
\(\Delta N = {N_0} - {N_0}{e^{ - \lambda t}} = {N_0}(1 - {e^{ - \lambda t}})\)
\( \Rightarrow \dfrac{{\Delta N}}{{{N_0}}} = 1 - {e^{ - \lambda t}} \Rightarrow 1 - \dfrac{{\Delta N}}{{{N_0}}} = {e^{ - \lambda t}}\)
\( \Rightarrow \dfrac{1}{{\left( {1 - \dfrac{{\Delta N}}{{{N_0}}}} \right)}} = {e^{\lambda t}} \Rightarrow \ln {\left( {1 - \dfrac{{\Delta N}}{{{N_0}}}} \right)^{ - 1}} = \lambda t\)
Từ đồ thị ta thấy \(\lambda \approx 0,078\)
\( \Rightarrow T = \dfrac{{\ln 2}}{\lambda } \approx 8,9\) (ngày)