Hàm số bậc hai một ẩn và đồ thị hàm số y=ax^2

Câu 41 Trắc nghiệm

Tìm toạ độ giao điểm của đồ thị \(\left( P \right)\) của hàm số \(y=\left( m-1 \right){{x}^{2}}\) với đường thẳng \(d:y=2x-1\) biết \(\left( P \right)\) đi qua điểm \(\left( 2;4 \right)\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đồ thị \(\left( P \right)\) của hàm số \(y=\left( m-1 \right){{x}^{2}}\) đi qua điểm \(\left( 2;4 \right)\)  nên ta có \(4=(m-1){{.2}^{2}}\Leftrightarrow 1=m-1\Leftrightarrow m=2\).

Vậy \(\left( P \right):y={{x}^{2}}\). Hoành độ giao điểm của \(d\) và \(\left( P \right)\)  là nghiệm của phương trình:\({{x}^{2}}-(2x-1)=0\Leftrightarrow {{(x-1)}^{2}}=0\Leftrightarrow x=1\)\(\Rightarrow y=1\)

Vậy \(d\) giao với \(\left( P \right)\) tại điểm \(\left( 1;1 \right)\).

Câu 42 Trắc nghiệm

Trên một hệ trục toạ độ, vẽ parabol \(\left( P \right)\) có đỉnh \(O\) và đi qua \(A\left( \sqrt{3};-3 \right)\). Hoành độ điểm thuộc \(\left( P \right)\) có tung độ bằng \(-2\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì parabol có đỉnh \(O\) nên có dạng \(y=a{{x}^{2}}\left( a\ne 0 \right)\). 

\(\left( P \right)\) đi qua \(A\left( \sqrt{3};-3 \right)\) nên toạ độ điểm \(A\) thoả mãn phương trình hàm số.

Ta có \(-3=a{{(\sqrt{3})}^{2}}\Rightarrow a=-1\Rightarrow y=-{{x}^{2}}\).

Thay \(y=-2\) vào hàm số ta được \(-2=-{{x}^{2}}\Rightarrow {{x}^{2}}=2\Rightarrow \left[\begin{align} & x=\sqrt{2} \\ & x=-\sqrt{2} \\\end{align} \right.\)

Câu 43 Trắc nghiệm

 Cho hàm số \(y=\dfrac{25}{4}{{x}^{2}}\). Xác định toạ độ điểm \(A\) thuộc đồ thị hàm số và có tung độ là \(1\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Điểm \(A\) có tung độ là \(1\)  nên thay \(y=1\) vào phương trình \(y=\dfrac{25}{4}{{x}^{2}}\) ta được \(x=\dfrac{2}{5}\) hoặc \(x=-\dfrac{2}{5}\).

Vậy \(A\left( \dfrac{2}{5};1 \right)\) hoặc \(A\left( -\dfrac{2}{5};1 \right)\)  

Câu 44 Trắc nghiệm

Cho hàm số $y = a{x^2}\,\,$ với $a \ne 0$. Kết luận nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Cho hàm số $y = {\rm{a}}{{\rm{x}}^2}\,\,(a \ne 0)$.

a) Nếu $a > 0$ thì hàm số nghịch biến khi $x < 0$ và đồng biến khi $x > 0$.

b) Nếu $a < 0$ thì hàm số đồng biến khi $x < 0$ và nghịch biến khi $x > 0$.

Câu 45 Trắc nghiệm

Kết luận nào sau đây là sai khi nói về đồ thị của hàm số $y = a{x^2}\,\,$ với $a \ne 0$.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) là một parabol đi qua gốc tọa độ $O,$ nhận $Oy$ là trục đối xứng ($O$ là đỉnh của parabol).

- Nếu \(a > 0\) thì đồ thị nằm phía trên trục hoành, $O$ là điểm thấp nhất của đồ thị.

- Nếu \(a < 0\) thì đồ thị nằm phía dưới trục hoành, $O$ là điểm cao nhất của đồ thị.

Câu 46 Trắc nghiệm

Giá trị của hàm số $y = f\left( x \right) =  - 7{x^2}$ tại ${x_0} =  - 2$ là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Thay ${x_0} =  - 2$ vào hàm số $y = f\left( x \right) =  - 7{x^2}$  ta được $f\left( { - 2} \right) =  - 7.{\left( { - 2} \right)^2} =  - 28$

Câu 47 Trắc nghiệm

Cho hàm số $y = f\left( x \right) = \left( { - 2m + 1} \right){x^2}.$

Tìm giá trị của $m$ để đồ thị đi qua điểm $A\left( { - 2;4} \right).$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Thay tọa độ điểm $A\left( { - 2;4} \right)$ vào hàm số $y = f\left( x \right) = \left( { - 2m + 1} \right){x^2}$  ta được

$\left( { - 2m + 1} \right).{\left( { - 2} \right)^2} = 4 \Leftrightarrow  - 2m + 1 = 1 \Leftrightarrow m = 0$

Vậy $m = 0$ là giá trị cần tìm.

Câu 48 Trắc nghiệm

Cho hàm số \(y = f\left( x \right) =  - 2{x^2}\) . Tổng các giá trị của $a$ thỏa mãn $f\left( a \right) =  - 8 + 4\sqrt 3 $ là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có $f\left( a \right) =  - 8 + 4\sqrt 3 $$ \Leftrightarrow  - 2{a^2} =  - 8 + 4\sqrt 3 $$ \Leftrightarrow {a^2} = 4 - 2\sqrt 3 $$ \Leftrightarrow {a^2} = {\left( {\sqrt 3  - 1} \right)^2}$

$ \Leftrightarrow \left[ \begin{array}{l}a = \sqrt 3  - 1\\a = 1 - \sqrt 3 \end{array} \right.$

Vậy  tổn các giá trị của $a$ là $\left( {\sqrt 3  - 1} \right) + \left( {1 - \sqrt 3 } \right) = 0$

Câu 49 Trắc nghiệm

Cho hàm số \(y = \left( {5m + 2} \right){x^2}\) với $m \ne  - \dfrac{2}{5}$. Tìm $m$ để  hàm số nghịch biến với mọi \(x > 0.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Để  hàm số nghịch biến với mọi \(x > 0\) thì $a < 0$ nên $5m + 2 < 0 \Leftrightarrow m <  - \dfrac{2}{5}$.

Vậy $m <  - \dfrac{2}{5}$ thỏa mãn điều kiện đề bài.

Câu 50 Trắc nghiệm

Cho hàm số \(y = \left( {4 - 3m} \right){x^2}\) với $m \ne \dfrac{4}{3}$. Tìm $m$ để  hàm số đồng biến với mọi \(x > 0\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Để  hàm số đồng biến với mọi \(x > 0\) thì $a > 0$ nên $4 - 3m > 0 \Leftrightarrow  4>3m$$ \Leftrightarrow 3m<4\Leftrightarrow m < \dfrac{4}{3}$.

Vậy $m < \dfrac{4}{3}$ thỏa mãn điều kiện đề bài

Câu 51 Trắc nghiệm

Trong các điểm $A(1;2);B( - 1; - 1);C(10; - 200);D\left( {\sqrt {10} ; - 10} \right)$ có bao nhiêu điểm thuộc đồ thị hàm số $\left( P \right): y =  - {x^2}$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Thay tọa độ điểm $A\left( {1;2} \right)$ vào hàm số $y =  - {x^2}$ ta được $2 =  - {1^2}$( vô lý) nên $A \notin \left( P \right)$

+) Thay tọa độ điểm $C\left( {10; - 200} \right)$ vào hàm số $y =  - {x^2}$ ta được $ - 200 =  - {\left( {10} \right)^2} \Leftrightarrow  - 200 =  - 100$( vô lý) nên loại $C \notin \left( P \right)$

+) Thay tọa độ điểm $D\left( {\sqrt {10} ; - 10} \right)$ vào hàm số $y =  - {x^2}$ ta được $ - 10 =  - {\left( {\sqrt {10} } \right)^2} \Leftrightarrow  - 10 =  - 10$( luôn đúng) nên $D \in \left( P \right)$

+) Thay tọa độ điểm $B\left( { - 1; - 1} \right)$ vào hàm số $y =  - {x^2}$ ta được $ - 1 =  - {\left( { - 1} \right)^2} \Leftrightarrow  - 1 =  - 1$ (luôn đúng)

$B \in \left( P \right)$.

Câu 52 Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = 3{x^2}\). Tìm $b$ biết \(f\left( b \right) \ge 6b + 9\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(f\left( b \right) \ge 6b + 9\) $ \Leftrightarrow 3{b^2} \ge 6b + 9 \Leftrightarrow {b^2} - 2b - 3 \ge 0$$ \Leftrightarrow \left( {b + 1} \right)\left( {b - 3} \right) \ge 0 $

\(\begin{array}{l}
TH1:\left\{ \begin{array}{l}
b + 1 \ge 0\\
b - 3 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
b \ge - 1\\
b \ge 3
\end{array} \right. \Rightarrow b \ge 3\\
TH2:\left\{ \begin{array}{l}
b + 1 \le 0\\
b - 3 \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
b \le - 1\\
b \le 3
\end{array} \right. \Rightarrow b \le - 1
\end{array}\)

Vậy $\left[ \begin{array}{l}b \le  - 1\\b \ge 3\end{array} \right.$ là giá trị cần tìm.

Câu 53 Trắc nghiệm

Cho hàm số \(y = \left( {2m + 2} \right){x^2}\). Tìm $m$ để đồ thị hàm số đi qua điểm $A\left( {x;y} \right)$ với $\left( {x;y} \right)$ là nghiệm của hệ phương trình  \(\left\{ \begin{array}{l}x - y = 1\\2x - y = 3\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\left\{ \begin{array}{l}x - y = 1\\2x - y = 3\end{array} \right.\)$ \Leftrightarrow \left\{ \begin{array}{l}x = y + 1\\2\left( {y + 1} \right) - y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.$$ \Rightarrow A\left( {2;1} \right)$

Thay $x = 2;y = 1$ vào hàm số \(y = \left( {2m + 2} \right){x^2}\) ta được

$1 = \left( {2m + 2} \right){.2^2} \Leftrightarrow 2m + 2 = \dfrac{1}{4} \Leftrightarrow 2m = \dfrac{{ - 7}}{4} \Leftrightarrow m = \dfrac{{ - 7}}{8}$

Vậy $m =  - \dfrac{7}{8}$ là giá trị cần tìm.

Câu 54 Trắc nghiệm

Cho hàm số \(y = \left( { - {m^2} + 4m - 5} \right){x^2}\) . Kết luận nào sau đây là đúng 

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta thấy hàm số \(y = \left( { - {m^2} + 4m - 5} \right){x^2}\) có

$a =  - {m^2} + 4m - 5 =  - \left( {{m^2} - 4m + 4} \right) - 1 =  - {\left( {m - 2} \right)^2} - 1$

Vì \((m-2)^2\ge 0\) với mọi \(m\) nên \(-(m-2)^2\le 0\) với mọi m

Suy ra \(-(m-2)^2-1\le 0-1\Rightarrow -(m-2)^2-1\le -1<0\) với mọi m

Hay \(a<0\) với mọi m

Nên hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\). Suy  ra C,D sai.

Và đồ thị hàm số  nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.

Suy ra A sai.

Câu 55 Trắc nghiệm

Hình vẽ dưới đây là của đồ thị hàm số nào?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Từ hình vẽ suy ra $a < 0$ nên loại B,C

Vì đồ thị đi qua điểm có tọa độ $\left( {1; - 1} \right)$ nên loại D.

Câu 56 Trắc nghiệm

Cho hàm số $y = \sqrt 3 {x^2}\,\,$có đồ thị là $(P)$.  Có bao nhiêu  điểm trên $\left( P \right)$ có tung độ gấp đôi hoành độ.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi điểm $M$$\left( {x;y} \right)$ là điểm cần tìm. Vì $M$ có tung độ gấp đôi hoành độ nên $M\left( {x;2x} \right)$.

Thay tọa độ điểm $M$ vào hàm số ta được

$2x = \sqrt 3 {x^2} \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 0\\x = \dfrac{{2\sqrt 3 }}{3} \Rightarrow y = \dfrac{{4\sqrt 3 }}{3}\end{array} \right.$

Hay có hai điểm thỏa mãn điều kiện là $O\left( {0;0} \right),M\left( {\dfrac{{2\sqrt 3 }}{3};\dfrac{{4\sqrt 3 }}{3}} \right)$.

Câu 57 Trắc nghiệm

Cho $(P):y = \dfrac{1}{2}{x^2};(d):y = x - \dfrac{1}{2}$. Tìm toạ độ giao điểm của $(P)$ và $(d)$.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét phương trình hoành độ giao điểm của parabol $\left( P \right)$ và đường thẳng $d$

$\dfrac{1}{2}{x^2} = x - \dfrac{1}{2} \Leftrightarrow {x^2} - 2x + 1 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 0 $$\Leftrightarrow x-1=0\Leftrightarrow x = 1$

Thay \(x=1\) vào hàm số \(y=\dfrac{1}{2}x^2\) ta được \( y = \dfrac{1}{2}.1^2=\dfrac{1}{2}\)

Nên tọa độ giao điểm cần tìm là $\left( {1;\dfrac{1}{2}} \right)$.

Câu 58 Trắc nghiệm

Cho parabol \(y = \dfrac{1}{4}{x^2}\). Xác định \(m\) để  điểm \(A\left( {\sqrt 2 ;m} \right)\) nằm trên parabol.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Thay \(x = \sqrt 2 ;y = m\) vào hàm số \(y = \dfrac{1}{4}{x^2}\) ta được \(m = \dfrac{1}{4}.{\left( {\sqrt 2 } \right)^2} = \dfrac{1}{2}.\)

Vậy \(m = \dfrac{1}{2}.\)

Câu 59 Trắc nghiệm

Cho parabol$(P):y = 2{x^2}$ và đường thẳng $(d):y = x + 1$. Số giao điểm của đường thẳng $d$ và parabol $\left( P \right)$ là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét phương trình hoành độ giao điểm của parabol $\left( P \right)$ và đường thẳng $d$

$2{x^2} = x + 1 \Leftrightarrow 2{x^2} - x - 1 = 0 \\\Leftrightarrow 2{x^2} - 2x + x - 1 = 0 \\\Leftrightarrow 2x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {2x + 1} \right)\left( {x - 1} \right) = 0$

$ \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{1}{2}\\x = 1\end{array} \right.$

Vậy có hai giao điểm của đường thẳng $d$ và parabol $\left( P \right)$.

Câu 60 Trắc nghiệm

Cho parabol $(P):y = \left( {m - 1} \right){x^2}$ và đường thẳng $(d):y = 3 - 2x$. Tìm $m$ để đường thẳng $d$ cắt $\left( P \right)$ tại điểm có tung độ $y = 5$.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Thay $y = 5$ vào phương trình đường thẳng $d$ ta được $5 = 3 - 2x \Leftrightarrow x =  - 1$

Nên tọa độ giao điểm của đường thẳng $d$ và parabol $\left( P \right)$ là $\left( { - 1;5} \right)$

Thay $x =  - 1;y = 5$ vào hàm số $y = \left( {m - 1} \right){x^2}$ ta được

$\left( {m - 1} \right).{\left( { - 1} \right)^2} = 5 \Leftrightarrow m - 1 = 5 \Leftrightarrow m = 6$

Vậy $m = 6$ là giá trị cần tìm.