Câu hỏi:
2 năm trước

Trong các điểm $A(1;2);B( - 1; - 1);C(10; - 200);D\left( {\sqrt {10} ; - 10} \right)$ có bao nhiêu điểm thuộc đồ thị hàm số $\left( P \right): y =  - {x^2}$

Trả lời bởi giáo viên

Đáp án đúng: d

+) Thay tọa độ điểm $A\left( {1;2} \right)$ vào hàm số $y =  - {x^2}$ ta được $2 =  - {1^2}$( vô lý) nên $A \notin \left( P \right)$

+) Thay tọa độ điểm $C\left( {10; - 200} \right)$ vào hàm số $y =  - {x^2}$ ta được $ - 200 =  - {\left( {10} \right)^2} \Leftrightarrow  - 200 =  - 100$( vô lý) nên loại $C \notin \left( P \right)$

+) Thay tọa độ điểm $D\left( {\sqrt {10} ; - 10} \right)$ vào hàm số $y =  - {x^2}$ ta được $ - 10 =  - {\left( {\sqrt {10} } \right)^2} \Leftrightarrow  - 10 =  - 10$( luôn đúng) nên $D \in \left( P \right)$

+) Thay tọa độ điểm $B\left( { - 1; - 1} \right)$ vào hàm số $y =  - {x^2}$ ta được $ - 1 =  - {\left( { - 1} \right)^2} \Leftrightarrow  - 1 =  - 1$ (luôn đúng)

$B \in \left( P \right)$.

Hướng dẫn giải:

Điểm $M\left( {{x_0};{y_0}} \right)$ thuộc đồ thị hàm số $y = a{x^2}\,\left( {a \ne 0} \right)$ khi ${y_0} = ax_0^2\,$

Câu hỏi khác