Câu hỏi:
2 năm trước

Cho hàm số \(y = \left( {4 - 3m} \right){x^2}\) với $m \ne \dfrac{4}{3}$. Tìm $m$ để  hàm số đồng biến với mọi \(x > 0\)

Trả lời bởi giáo viên

Đáp án đúng: c

Để  hàm số đồng biến với mọi \(x > 0\) thì $a > 0$ nên $4 - 3m > 0 \Leftrightarrow  4>3m$$ \Leftrightarrow 3m<4\Leftrightarrow m < \dfrac{4}{3}$.

Vậy $m < \dfrac{4}{3}$ thỏa mãn điều kiện đề bài

Hướng dẫn giải:

Xét hàm số \(y = a{x^2}\left( {a \ne 0} \right).\) Ta có:

+) Nếu \(a > 0\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0\).

+) Nếu \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\).

Câu hỏi khác