Câu hỏi:
2 năm trước

Cho parabol$(P):y = 2{x^2}$ và đường thẳng $(d):y = x + 1$. Số giao điểm của đường thẳng $d$ và parabol $\left( P \right)$ là:

Trả lời bởi giáo viên

Đáp án đúng: d

Xét phương trình hoành độ giao điểm của parabol $\left( P \right)$ và đường thẳng $d$

$2{x^2} = x + 1 \Leftrightarrow 2{x^2} - x - 1 = 0 \\\Leftrightarrow 2{x^2} - 2x + x - 1 = 0 \\\Leftrightarrow 2x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {2x + 1} \right)\left( {x - 1} \right) = 0$

$ \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{1}{2}\\x = 1\end{array} \right.$

Vậy có hai giao điểm của đường thẳng $d$ và parabol $\left( P \right)$.

Hướng dẫn giải:

Cho parabol $(P):y = {\rm{a}}{{\rm{x}}^2}(a \ne 0)$ và đường thẳng $d:y = mx + n$. Để tìm tọa độ giao điểm (nếu có) của $(d)$ và $(P)$, ta làm như sau:

Bước 1. Xét phương trình hoành độ giao điểm của $(d)$ và $(P)$ :$ax^2 = mx + n$

Bước 2. Giải phương trình (*) ta tìm được nghiệm (nếu có). Từ đó suy ra số giao điểm của parabol và đường thẳng.

Câu hỏi khác