Câu hỏi:
2 năm trước

Cho hàm số \(y = \left( {5m + 2} \right){x^2}\) với $m \ne  - \dfrac{2}{5}$. Tìm $m$ để  hàm số nghịch biến với mọi \(x > 0.\)

Trả lời bởi giáo viên

Đáp án đúng: a

Để  hàm số nghịch biến với mọi \(x > 0\) thì $a < 0$ nên $5m + 2 < 0 \Leftrightarrow m <  - \dfrac{2}{5}$.

Vậy $m <  - \dfrac{2}{5}$ thỏa mãn điều kiện đề bài.

Hướng dẫn giải:

Xét hàm số \(y = a{x^2}\left( {a \ne 0} \right).\) Ta có:

+) Nếu \(a > 0\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0\).

+) Nếu \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\).

Câu hỏi khác