Câu hỏi:
2 năm trước

Cho $(P):y = \dfrac{1}{2}{x^2};(d):y = x - \dfrac{1}{2}$. Tìm toạ độ giao điểm của $(P)$ và $(d)$.

Trả lời bởi giáo viên

Đáp án đúng: a

Xét phương trình hoành độ giao điểm của parabol $\left( P \right)$ và đường thẳng $d$

$\dfrac{1}{2}{x^2} = x - \dfrac{1}{2} \Leftrightarrow {x^2} - 2x + 1 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 0 $$\Leftrightarrow x-1=0\Leftrightarrow x = 1$

Thay \(x=1\) vào hàm số \(y=\dfrac{1}{2}x^2\) ta được \( y = \dfrac{1}{2}.1^2=\dfrac{1}{2}\)

Nên tọa độ giao điểm cần tìm là $\left( {1;\dfrac{1}{2}} \right)$.

Hướng dẫn giải:

Cho parabol $(P):y = {\rm{a}}{{\rm{x}}^2}(a \ne 0)$ và đường thẳng $d:y = mx + n$. Để tìm tọa độ giao điểm (nếu có) của $(d)$ và $(P)$, ta làm như sau:

Bước 1. Xét phương trình hoành độ giao điểm của $(d)$ và $(P)$ :${\rm{a}}{{\rm{x}}^2} = mx + n$

Bước 2. Giải phương trình (*) ta tìm được nghiệm (nếu có). Từ đó ta tìm được tọa độ giao điểm của $(d)$ và $(P)$

Câu hỏi khác