Cho đoạn mạch AB gồm đoạn AM nối tiếp với MB. Biết đoạn AM gồm điện trở R nối tiếp với tụ điện có điện dung C và MB chứa cuộn dây có độ tự cảm L và có điện trở r. Đặt vào AB một điện áp xoay chiều \(u = U\sqrt 2 \cos \omega t\,\,\left( V \right)\). Biết \(R = r = \sqrt {\dfrac{L}{C}} \), điện áp hiệu dụng \({U_{MB}} = \sqrt 3 {U_{AM}}\). Hệ số công suất của đoạn mạch gần với giá trị nào nhất sau đây?
Ta có: \(R = r = \sqrt {\dfrac{L}{C}} = \sqrt {{Z_L}.{Z_C}} \)
Theo đề bài có điện áp hiệu dụng:
\(\begin{array}{l}{U_{MB}} = \sqrt 3 {U_{AM}} \Rightarrow {U_{cd}} = \sqrt 3 {U_{RC}} \Rightarrow {Z_{cd}}^2 = 3{Z_{RC}}^2\\ \Rightarrow {r^2} + {Z_L}^2 = 3\left( {{R^2} + {Z_C}^2} \right) \Rightarrow {R^2} + {Z_L}^2 = 3{R^2} + 3{Z_C}^2\\ \Rightarrow {Z_L}^2 - 2{R^2} - 3{Z_C}^2 = 0 \Rightarrow {Z_L}^2 - 2{Z_L}{Z_C} - 3{Z_C}^2 = 0\\ \Rightarrow {Z_L} = 3{Z_C}\end{array}\)
Chuẩn hóa \({Z_C} = 1 \Rightarrow {Z_L} = 3 \Rightarrow R = r = \sqrt 3 \)
Hệ số công suất của mạch là:
\(\cos \varphi = \dfrac{{R + r}}{{\sqrt {{{\left( {R + r} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \dfrac{{2\sqrt 3 }}{{\sqrt {{{\left( {2\sqrt 3 } \right)}^2} + {2^2}} }} \approx 0,866\)
Một nhà vườn trồng hoa phục vụ dịp tết. Do thời tiết lạnh kéo dài, để hoa nở đúng tết phải dùng các bóng đèn sợi đốt loại \(200V - 220W\)để thắp sáng và sưởi ấm vườn hoa vào ban đêm. Biết điện năng được truyền từ trạm điện đến nhà vườn bằng đường tải một pha có điện trở \(50\Omega \), điện áp hiệu dụng tại trạm là 1500V. Ở nhà vườn, người ta dùng máy hạ áp lý tưởng. Coi rằng hao phí điện năng chỉ xảy ra trên đường dây tải điện và hệ số công suất của mạch luôn bằng 1. Để các đèn sáng bình thường thì số bóng đèn tối đa mà nhà vườn có thể sử dụng cùng lúc là
Gọi P là công suất nơi phát, n là số bóng đèn nhà vườn sử dụng.
Tổng công suất các bóng đèn tiêu thụ:
\(P' = 220n = P - \Delta P\)
\(\begin{array}{l} \Rightarrow 220n = P - \dfrac{{{P^2}}}{{{U^2}{{\cos }^2}\varphi }}R = P - \dfrac{{{P^2}}}{{{{1500}^2}}}.50\\ \Rightarrow 50{P^2} - 22,{5.10^5}P + 49,{5.10^7}.n = 0\end{array}\)
Để phương trình có nghiệm thì:
\(\Delta \ge 0 \Leftrightarrow {b^2} - 4.a.c \ge 0\)
\( \Leftrightarrow {\left( {22,{{5.10}^5}} \right)^2} - 4.50.49,{5.10^7}n \ge 0\)
\( \Leftrightarrow n \le 51,136 \Rightarrow {n_{\max }} = 51\)
\( \Rightarrow \) Số bóng tối đa mà nhà vườn có thể sử dụng cùng lúc là 51 bóng.
Đặt điện áp xoay chiều có giá trị hiệu dụng U không đổi vào hai đầu đoạn mạch AB mắc nối tiếp gồm cuộn dây thuần cảm có độ tự cảm L, điện trở R và tụ điện có điện dung C. Tần số góc ω của điện áp là thay đổi được. Hình vẽ bên là đồ thị biểu diễn sự phụ thuộc của điện áp hiệu dụng trên L theo giá trị tần số góc ω. Lần lượt cho ω bằng x, y và z thì mạch AB tiêu thụ công suất lần lượt là P1, P2 và P3. Biểu thức nào sau đây đúng?
Điện áp hiệu dụng giữa hai đầu cuộn dây là:
\({U_L} = \dfrac{{U.{Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \dfrac{{U.{Z_L}}}{R}.\dfrac{R}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \dfrac{{U.{Z_L}.cos\varphi }}{R}\)
Với tần số ω1 = x; ω2 = y và ω3 = z, ta có:
\(\dfrac{1}{{{\omega _1}^2}} + \dfrac{1}{{{\omega _3}^2}} = \dfrac{2}{{{\omega _2}^2}}\)
Từ đồ thị ta thấy:
\(\begin{array}{l}{U_{L1}} = {U_{L3}} = \dfrac{3}{4}{U_{L2}} = \dfrac{3}{4}{U_{L\max }}\\ \Rightarrow \dfrac{{U.{Z_{L1}}\cos {\varphi _1}}}{R} = \dfrac{{U.{Z_{L3}}\cos {\varphi _3}}}{R} = \dfrac{3}{4}\dfrac{{U.{Z_{L2}}\cos {\varphi _2}}}{R}\\ \Rightarrow {\omega _1}^2{\cos ^2}{\varphi _1} = {\omega _3}^2{\cos ^2}{\varphi _3} = \dfrac{9}{{16}}{\omega _2}^2{\cos ^2}{\varphi _2}\\ \Rightarrow \left\{ \begin{array}{l}\dfrac{{{{\cos }^2}{\varphi _1}}}{{{{\cos }^2}{\varphi _2}}} = \dfrac{9}{{16}}\dfrac{{{\omega ^2}}}{{{\omega _1}^2}}\\\dfrac{{{{\cos }^2}{\varphi _2}}}{{{{\cos }^2}\varphi }} = \dfrac{9}{{16}}\dfrac{{{\omega ^2}}}{{{\omega _2}^2}}\end{array} \right. \Rightarrow \dfrac{{{{\cos }^2}{\varphi _1}}}{{{{\cos }^2}{\varphi _2}}} + \dfrac{{{{\cos }^2}{\varphi _3}}}{{{{\cos }^2}{\varphi _2}}} = \dfrac{9}{{16}}{\omega ^2}.\left( {\dfrac{1}{{{\omega _1}^2}} + \dfrac{1}{{{\omega _3}^2}}} \right)\\ \Rightarrow \dfrac{{{{\cos }^2}{\varphi _1}}}{{{{\cos }^2}{\varphi _2}}} + \dfrac{{{{\cos }^2}{\varphi _2}}}{{{{\cos }^2}{\varphi _2}}} = \dfrac{9}{{16}}{\omega _2}^2.\dfrac{2}{{{\omega _2}^2}} = \dfrac{9}{8}\,\,\left( 1 \right)\end{array}\)
Công suất tiêu thụ của mạch điện là:
\(P = \dfrac{{{U^2}{{\cos }^2}\varphi }}{R} \Rightarrow P \sim {\cos ^2}\varphi \)
Từ (1) ta có: \(\dfrac{{{P_1}}}{{{P_2}}} + \dfrac{{{P_3}}}{{{P_2}}} = \dfrac{9}{8} \Rightarrow \dfrac{{{P_1} + {P_3}}}{9} = \dfrac{{{P_2}}}{8}\)
Một đoạn mạch gồm điện trở thuần R, cuộn dây cảm thuần có độ tự cảm L, tụ điện có điện dung C thay đổi được mắc nối tiếp. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều \(u = U\sqrt 2 .\cos \left( {100\pi t} \right)V\). Khi \(C = {C_1}\) thì công suất tiêu thụ của mạch là \(P = 100W\) và cường độ dòng điện qua mạch có biểu thức \(i = {I_0}.\cos \left( {100\pi t + \dfrac{\pi }{3}} \right)A\). Khi \(C = {C_2}\), công suất tiêu thụ của mạch đạt cực đại. Giá trị cực đại đó là:
Khi C = C1 thì độ lệch pha giữa u và i được xác định:
\(\begin{array}{l}\tan \varphi = \dfrac{{{Z_L} - {Z_{{C_1}}}}}{R} \Rightarrow \tan \dfrac{{ - \pi }}{3} = \dfrac{{{Z_L} - {Z_C}_1}}{R} = - \sqrt 3 \\ \Rightarrow {Z_L} - {Z_{{C_1}}} = - \sqrt 3 .R\end{array}\)
Áp dụng công thức tính công suất:
\(\begin{array}{l}P = {I^2}.R = \dfrac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_{{C_1}}})}^2}}} \Rightarrow 100 = \dfrac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_{C1}})}^2}}}\\ \Rightarrow 100 = \dfrac{{{U^2}.R}}{{{R^2} + {{( - \sqrt 3 R)}^2}}} = \dfrac{{{U^2}}}{{4.R}}\end{array}\)
Thay đổi C để P cực đại thì tức là xảy ra cộng hưởng, khi đó:
\({P_{\max }} = \dfrac{{{U^2}}}{R} = 4.\dfrac{{{U^2}}}{{4.R}} = 4.100 = 400{\rm{W}}\)