Một con lắc lò xo dao động điều hòa theo phương thẳng đứng trùng với trục của lò xo được giữ cố định, đầu phía dưới của lò xo gắn vào một đĩa cân nhỏ có khối lượng \({m_1} = {\rm{ }}400{\rm{ }}g\). Biên độ dao động của con lắc lò xo là 4 cm. Đúng lúc đĩa cân đi qua vị trí thấp nhất của quỹ đạo, người ta đặt nhẹ nhàng lên một vật nhỏ có khối lượng \({m_2} = {\rm{ }}100{\rm{ }}g\) lên đĩa cân m1. Kết quả là ngay sau khi đặt m2, hệ chấm dứt dao động. Bỏ qua mọi ma sát. Bỏ qua khối lượng của lò xo. Biết\(g{\rm{ }} = {\rm{ }}{\pi ^2} = {\rm{ }}10{\rm{ }}m/{s^2}\). Chu kỳ dao động của con lắc khi chưa đăt thêm vật nhỏ \({m_2}\) bằng
+ Khi vật \({m_1}\) ở vị trí biên dưới, ta đặt vật \({m_2}\) thì dao động dừng
\( \Rightarrow \) Vị trí cân bằng mới của hệ trùng với vị trí biên dưới
\( \Rightarrow \) Độ biến dạng của lò xo tại vị trí này là: \(\Delta l = \dfrac{{{m_1}g}}{k} + A\)
+ Tại điểm đó: Lực đàn hồi cân bằng với trọng lực: \({P_1} + {P_2} = {F_{dh}}\)
\(\begin{array}{l} \Leftrightarrow {m_1}g + {m_2}g = k\Delta l\\ \Leftrightarrow 0,4.10 + 0,1.10 = k\left( {\dfrac{{0,4.10}}{k} + 0,04} \right)\\ \Rightarrow k = 25N/m\end{array}\)
+ Chu kì dao động ban đầu của vật: \(T = 2\pi \sqrt {\dfrac{{{m_1}}}{k}} = 2\pi \sqrt {\dfrac{{0,4}}{{25}}} = 0,8s\)
Một lò xo đồng chất tiết diện đều được cắt thành \(3\) lò xo có chiều dài tự nhiên \(l\,\,\left( {cm} \right)\); \(\left( {l - 12} \right)\,\,\left( {cm} \right)\) và \(\left( {{\rm{l}} - 15} \right)\,\,\left( {cm} \right)\). Lần lượt gắn mỗi lò xo này (theo thứ tự trên) với vật nhỏ khối lượng \(m\) thì được \(3\) con lắc lò xo có chu kỳ dao động riêng tương ứng là \(2,5\,\,s;\,\,1,5\,\,s\) và \(T\). Biết độ cứng của các lò xo tỉ lệ nghịch với chiều dài tự nhiên của nó. Giá trị của \(T\) là
Với con lắc lò xo có chiều dài l; (l – 12), ta có tỉ số: \(\dfrac{{{{\rm{l}}_1}}}{{{{\rm{l}}_2}}} = \dfrac{{\rm{l}}}{{{\rm{l}} - 12}} = \dfrac{{{k_2}}}{{{k_1}}}\)
Chu kì của con lắc:
\(\begin{array}{l}\left\{ \begin{array}{l}{T_1} = 2\pi \sqrt {\dfrac{m}{{{k_1}}}} \\{T_2} = 2\pi \sqrt {\dfrac{m}{{{k_2}}}} \end{array} \right. \Rightarrow {\left( {\dfrac{{{T_1}}}{{{T_2}}}} \right)^2} = \dfrac{{{k_2}}}{{{k_1}}} = \dfrac{{\rm{l}}}{{{\rm{l}} - 12}}\\ \Rightarrow {\left( {\dfrac{{2,5}}{{1,5}}} \right)^2} = \dfrac{{\rm{l}}}{{{\rm{l}} - 12}} \Rightarrow {\rm{l}} = 18,75\,\,\left( {cm} \right)\end{array}\)
Với chiều dài lò xo là \(\left( {{\rm{l}} - 15} \right)\,\,\left( {cm} \right)\), ta có tỉ số:
\(\dfrac{{{{\rm{l}}_1}}}{{{{\rm{l}}_3}}} = \dfrac{{\rm{l}}}{{{\rm{l}} - 15}} = \dfrac{{{k_3}}}{{{k_1}}} \Rightarrow \dfrac{{{k_3}}}{{{k_1}}} = \dfrac{{18,75}}{{18,75 - 15}} = 5\)
Chu kì của con lắc khi đó là:
\({T_3} = 2\pi \sqrt {\dfrac{m}{{{k_3}}}} = 2\pi \sqrt {\dfrac{m}{{5{k_1}}}} = \dfrac{1}{{\sqrt 5 }}.2\pi \sqrt {\dfrac{m}{k}} = \dfrac{{{T_1}}}{{\sqrt 5 }} = \dfrac{{2,5}}{{\sqrt 5 }} \approx 1,12\,\,\left( s \right)\)
Xét một con lắc lò xo đang dao động điều hoà. Gọi T là khoảng thời gian nhỏ nhất giữa hai lần liên tiếp vật nặng có độ lớn vận tốc cực đại. Chu kì con lắc này bằng:
Gọi T’ là chu kì của con lắc lò xo.
Khoảng thời gian nhỏ nhất giữa hai lần liên tiếp vật nặng có độ lớn vận tốc cực đại là $\frac{T'}{2}$
Ta có: $\frac{{{T}'}}{2}=T\Rightarrow {T}'=2T.$
Trong dao động điều hòa của con lắc lò xo có độ cứng \(k\) và vật nặng có khối lượng \(m\) đặt nằm ngang. Điều nào sau đây là sai?
Tần số của con lắc lò xo dao động điều hòa: \(f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \)
\( \Rightarrow \) Phát biểu sai là: Tần số của dao động là \(f = 2\pi \sqrt {\dfrac{k}{m}} \)
Đề thi THPT QG - 2020
Một con lắc lò xo treo thẳng đứng gồm lò xo nhẹ và vật nhỏ A có khối lượng m. Lần lượt treo thêm các quả cân vào A thì chu kì dao động điều hòa của con lắc tương ứng là T. Hình bên biểu diễn sự phụ thuộc của T2 theo tổng khối lượng \(\Delta m\) của các quả cân treo vào A. Giá trị của m là
Ta có, chu kì dao động của con lắc tại các vị trí \(\Delta m\) là: \(T = 2\pi \sqrt {\frac{{m + \Delta m}}{k}} \)
Từ đồ thị, ta có:
+ Tại \(\Delta {m_{10}} = 10g\) ta có: \(T_{10}^2 = 0,3{s^2}\)
+ Tại \(\Delta {m_{30}} = 30g\) ta có: \(T_{30}^2 = 0,4{s^2}\)
Mặt khác: \(\left\{ \begin{array}{l}{T_{10}} = 2\pi \sqrt {\frac{{m + \Delta {m_{10}}}}{k}} \\{T_{30}} = 2\pi \sqrt {\frac{{m + \Delta {m_{30}}}}{k}} \end{array} \right.\) \( \Rightarrow \frac{{T_{10}^2}}{{T_{30}^2}} = \frac{{m + \Delta {m_{10}}}}{{m + \Delta {m_{30}}}} = \frac{{0,3}}{{0,4}} \Leftrightarrow \frac{{m + 10}}{{m + 30}} = \frac{3}{4} \Rightarrow m = 50g\)
Dụng cụ đo khối lượng trong một con tàu vũ trụcó cấu tạo gồm một chiếc ghế có khối lượng m được gắn vào đầu một chiếc lò xo có độ cứng k = 480 N/m. Để đo khối lượng của nhà du hành, nhà du hành ngồi vào ghế rồi cho chiếc ghế dao động. Chu kì dao động của ghế khi không có người là \({T_0} = 1,0s\); còn khi có nhà du hành ngồi vào ghế là \(T = 2,5s\). Khối lượng nhà du hành gần nhất với giá trị nào dưới đây:
+ Khối lượng của ghế khi chưa có nhà du hành:
\({T_0} = 2\pi \sqrt {\frac{m}{k}} \Rightarrow m = \frac{{T_0^2.k}}{{4{\pi ^2}}} = \frac{{{1^2}.480}}{{4.{\pi ^2}}} = 12,16\left( {kg} \right)\)
+ Khối lượng của ghế và nhà du hành (khi có nhà du hành):
\(T = 2\pi \sqrt {\frac{{M + m}}{k}} \Rightarrow m + M = \frac{{{T^2}.k}}{{4{\pi ^2}}} = \frac{{2,{5^2}.480}}{{4{\pi ^2}}} = 76\left( {kg} \right)\)
+ Khối lượng của nhà du hành là:
\(M = 76 - 12,16 = 63,84\left( {kg} \right)\)
Các nhà du hành làm việc trên trạm không gian quốc tế ISS được cân bằng thiết bị nào sau đây?
Các nhà du hành làm việc trên trạm không gian quốc tế ISS được cân bằng con lắc lò xo.