Kết quả:
0/50
Thời gian làm bài: 00:00:00
Đồ thị hàm số \(y = \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}}\) có bao nhiêu tiệm cận?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên:
Hàm số \(y = - 2f\left( x \right)\) đồng biến trên khoảng:
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy $ABCD$ là hình vuông cạnh bằng $a$. Hình chiếu vuông góc của điểm $A'$ trên mặt phẳng $\left( {ABCD} \right)$ là trung điểm $I$ của cạnh $AB$. Biết \(A'C\) tạo với mặt phẳng đáy một góc \(\alpha \) với \(\tan \alpha = \dfrac{2}{{\sqrt 5 }}\). Thể tích khối chóp $A'.ICD$ là:
Trong các khẳng định sau, khẳng định nào sai?
Tìm tất cả các giá trị của \(m\) để hàm số \(f\left( x \right) = \dfrac{{mx + 1}}{{x - m}}\) có giá trị lớn nhất trên \(\left[ {1;\;2} \right]\) bằng \( - 2\).
Cho khối chóp tam giác \(S.ABC\), trên các cạnh \(SA,SB,SC\) lần lượt lấy các điểm \(A',B',C'\). Khi đó:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(C,\)\(AB = a\sqrt 5 ,\)\(AC = a.\) Cạnh bên \(SA = 3a\) và vuông góc với mặt phẳng đáy. Thể tích của khối chóp \(S.ABC\) bằng
Số giá trị $m$ nguyên để hàm số \(y = \dfrac{{mx + 2}}{{x + m}}\) nghịch biến trên từng khoảng xác định của nó là
Khối đa diện đều nào sau đây có các mặt không phải là tam giác đều
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Số cực trị của hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) là:
Số giao điểm của hai đồ thị hàm số $y = 3{x^2}$ và $y = {x^3} + {x^2} + x + 1$ là:
Hai hình tứ diện có các cạnh bằng nhau và bằng \(a\) thì chúng:
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình bên. Số điểm cực trị của hàm số đã cho là:
Cho khối chóp \(S.ABC\). Trên các cạnh \(SA,SB,SC\) lấy các điểm \(A',B',C'\) sao cho \(A'A = 2SA',B'B = 2SB',C'C = 2SC'\), khi đó tồn tại một phép vị tự biến khối chóp \(S.ABC\) thành khối chóp \(S.A'B'C'\) với tỉ số đồng dạng là:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) = 3\) là:
Chọn khẳng định đúng:
Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Hình nào dưới đây bằng hình lăng trụ \(ABC.A'B'C'\)?
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 \). Thể tích của khối chóp $S.ABCD$ bằng
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(2f\left( x \right) + 3 = 0\) là:
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$ là $M = - 2$. Chọn khẳng định đúng:
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:
Số mặt phẳng đối xứng của hình hộp chữ nhật (các kích thước khác nhau) là:
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), \(SA \bot \left( {ABC} \right)\) và \(SA = a\). Tính thể tích khối chóp \(S.ABC\).
Nếu $\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty $ thì đường thẳng $x = {x_0}$ là:
Hàm số $y = {x^3} + 2a{x^2} + 4bx - 2018,{\mkern 1mu} {\mkern 1mu} (a,{\mkern 1mu} b \in R)$ đạt cực trị tại $x = - 1$ . Khi đó hiệu $a - b$ là:
Tìm giá trị của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{mx + 5}}{{x + 1}}\) đi qua \(A\left( {1; - 3} \right)\)
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sin x$ trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ lần lượt là
Cho hàm số \(y = {x^3} - 3{x^2} + 5\). Mệnh đề nào dưới đây đúng?
Điểm cực tiểu của đồ thị hàm số $y = {x^3} - 3x + 5$ là điểm
Cho hàm số $y = {\rm{\;}} - {x^3} + \left( {2m + 1} \right){x^2} - \left( {{m^2} - 1} \right)x - 5$ . Với giá trị nào của tham số $m$ thì đồ thị hàm số có hai điểm cực trị nằm về hai phía của trục tung?
Tìm GTLN và GTNN của hàm số $y = {x^5} - 5{x^4} + 5{x^3} + 1$ trên đoạn $\left[ { - 1;2} \right]$
Điểm $I\left( {2; - 3} \right)$ là tâm đối xứng của những đồ thị hàm số nào dưới đây?
(1) $y = \dfrac{{x - 2}}{{x + 3}}$ ; (2) $y = \dfrac{{ - 3x + 1}}{{x - 2}}$ ; (3) $y = \dfrac{{3x + 1}}{{2 - x}}$ ; (4) $y = \dfrac{{ - 6x}}{{2x + 4}}$ ; (5) $y = - \dfrac{{x + 1}}{{3x - 6}}$
Tìm tập hợp tất cả các giá trị của$m$ để đồ thị hàm số$y = \dfrac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - mx - 3m} }}$ có đúng hai tiệm cận đứng.
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có bảng biến thiên như hình bên. Trong các hệ số a, b, c và d có bao nhiêu số âm?
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình vẽ
Tính giá trị của \(a + 2b + c.\)
Đồ thị hàm số $y = \dfrac{{ax + 2}}{{2x + d}}$ như hình vẽ bên.
Chọn khẳng định đúng:
Cho hàm số\(y = a{x^3} + b{x^2} + cx + d(a \ne 0)\)có đồ thị (C), tiếp tuyến của (C ) có hệ số góc đạt giá trị bé nhất khi nào?
Cho hàm số \(y = \left( {x - 1} \right){\left( {x + 2} \right)^2}.\) Trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số nằm trên đường thẳng nào dưới đây?
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:
Có tất cả bao nhiêu khối đa diện đều?
Cho \(x\), \(y\) là những số thực thoả mãn \({x^2} - xy + {y^2} = 1\). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(P = \dfrac{{{x^4} + {y^4} + 1}}{{{x^2} + {y^2} + 1}}\). Giá trị của \(A = M + 15m\) là
Cho hình lập phương \(ABCD.A'B'C'D'\) có thể tích \(V\). Gọi \(M\) là điểm thuộc cạnh \(BB'\) sao cho \(MB = 2MB'\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) và vuông góc với \(AC'\) cắt các cạnh \(DD'\), \(DC\), \(BC\) lần lượt tại \(N\), \(P\), \(Q\). Gọi \({V_1}\) là thể tích của khối đa diện \(CPQMNC'\).Tính tỉ số \(\dfrac{{{V_1}}}{V}\).
Một nhà máy cần thiết kế một chiếc bể đựng nước hình trụ bằng tôn có nắp, có thể tích là \(64\pi \left( {{m^3}} \right)\). Tìm bán kính đáy \(r\) của hình trụ sao cho hình trụ được làm ra tốn ít nhiên liệu nhất.
Cho \(f\left( x \right) = \dfrac{1}{{{x^2} - 4x + 5}} - \dfrac{{{x^2}}}{4} + x\). Gọi \(M = \mathop {Max}\limits_{x \in \left[ {0;3} \right]} f\left( x \right);\) \(m = \mathop {Min}\limits_{x \in \left[ {0;3} \right]} f\left( x \right).\) Khi đó\(M-m\) bằng:
Số điểm cực đại của hàm số \(y = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)...\left( {x - 100} \right)\) bằng: