Kết quả:
0/50
Thời gian làm bài: 00:00:00
Khoảng cách giữa hai đường thẳng \({d_1}:\dfrac{x}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{3},{d_2}:\dfrac{{x + 1}}{1} = \dfrac{y}{3} = \dfrac{{z + 1}}{{ - 2}}\) là:
Cho hai điểm \(A\left( { - 3;1;2} \right),B\left( {1;1;0} \right)\), tọa độ trung điểm đoạn thẳng \(AB\) là:
Cho hai hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right].\) Gọi \(D\) là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng \(x=a,\,\,x=b\,\,\,\left( a < b \right).\) Diện tích \(S\) của hình phẳng \(D\) được tính bởi công thức:
Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho vectơ \(\overrightarrow a = \left( {2; - 2; - 4} \right)\); \(\overrightarrow b = \left( {1; - 1;1} \right)\). Mệnh đề nào dưới đây sai
Trong không gian $Oxyz$, điểm nào sau đây thuộc trục $Oy$?
Trong không gian tọa độ \(Oxyz\), tính thể tích khối tứ diện \(OBCD\) biết \(B\left( {2;0;0} \right),C\left( {0;1;0} \right),D\left( {0;0; - 3} \right)\).
Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?
Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:
Ba Tí muốn làm cửa sắt được thiết kế như hình bên. Vòm cổng có hình dạng một parabol. Giá \(1{m^2}\) cửa sắt là \(660\,000\) đồng. Cửa sắt có giá (nghìn đồng) là:
Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=9\) và hai điểm \(M\left( 4;-\,4;2 \right),\,\,N\left( 6;0;6 \right).\) Gọi \(E\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho \(EM+EN\) đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu \(\left( S \right)\) tại \(E.\)
Để tính $I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\,\cos x\,{\rm{d}}x} $ theo phương pháp tích phân từng phần, ta đặt
Trong không gian với hệ tọa độ $Oxyz$, mặt cầu $\left( S \right)$ có tâm $I\left( {1,2, - 3} \right)$ và đi qua điểm $A\left( {1,0,4} \right)$ có phương trình là
Hàm số \(F\left( x \right) = {x^5} + 5{x^3} - x + 2\) là một nguyên hàm của hàm số nào sau đây? (C là hằng số).
Công thức tính độ dài véc tơ \(\overrightarrow u = \left( {a;b;c} \right)\) là:
Tìm nguyên hàm của hàm số $f\left( x \right) = {x^2}ln\left( {3x} \right)$
Cho hai hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và có đồ thị như hình vẽ bên. Gọi $S$ là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng \(x = a,x = b\). Thể tích $V$ của vật thể tròn xoay tạo thành khi quay $S$ quanh trục $Ox$ được tính bởi công thức nào sau đây ?
Cho hai số phức \(z = 3 - 4i\) và \(z' = \left( {2 + m} \right) + mi\,\,\,\left( {m \in \mathbb{R}} \right)\) thỏa mãn \(\left| {z'} \right| = \left| {iz} \right|\). Tổng tất cả các giá trị của m bằng
Đổi biến \(x = 4\sin t\) của tích phân \(I = \int\limits_0^{\sqrt 8 } {\sqrt {16 - {x^2}} dx} \) ta được:
Trong không gian tọa độ Oxyz, mặt cầu \(\left( S \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-20=0\) và mặt phẳng \(\left( \alpha \right):\,\,x+2y-2z+7=0\) cắt nhau theo một đường tròn có chu vi bằng:
Véc tơ đơn vị trên trục \(Ox\) là:
Trong không gian với hệ tọa độ Oxyz , để hai vecto \(\overrightarrow a = \left( {m;2;3} \right)\) và \(\overrightarrow b \left( {1;n;2} \right)\) cùng phương thì \(2m + 3n\) bằng.
Viết công thức tính thể tích \(V\) của khối tròn xoay được tạo ra khi quay hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục $Ox$ và hai đường thẳng \(x = a,x = b\,\,\left( {a < b} \right)\) xung quanh trục \(Ox?\)
Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị dương trên \(\mathbb{R}.\) Gọi \({D_1}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\) các đường \(x = 0,\,\,x = 1\) và trục \(Ox.\) Gọi \({D_2}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{1}{3}f\left( x \right),\) các đường \(x = 0,\,\,\,x = 1\) và trục \(Ox.\) Quay các hình phẳng \({D_1},\,\,{D_2}\) quanh trục \(Ox\) ta được các khối tròn xoay có thể tích lần lượt là \({V_1},\,\,{V_2}.\)
Khẳng định nào sau đâu là đúng?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:$\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 2 + t\end{array} \right.$. Đường thẳng $d$ đi qua các điểm nào sau đây?
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):2x - 2y + z - n = 0\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 + t\\z = 3 + \left( {2m - 1} \right)t\end{array} \right.\). Với giá trị nào của \(m,{\rm{ }}n\) thì \(d\) song song \(\left( P \right)\)?
Cho các phát biểu sau: (Với $C$ là hằng số):
(I) \(\int\limits_{}^{} {0dx} = x + C\)
(II) \(\int\limits_{}^{} {\dfrac{1}{x}dx} = \ln \left| x \right| + C\)
(III) \(\int\limits_{}^{} {\sin xdx} = - \cos x + C\)
(IV) \(\int\limits_{}^{} {\cot xdx} = - \dfrac{1}{{{{\sin }^2}x}} + C\)
(V) \(\int\limits_{}^{} {{e^x}dx} = {e^x} + C\)
(VI) \(\int\limits_{}^{} {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {\forall n \ne - 1} \right)\)
Số phát biểu đúng là:
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.
Cho $I = \int {\dfrac{{d{\rm{x}}}}{{\sqrt {2{\rm{x}} - 1} + 4}}} = \sqrt {2{\rm{x}} - 1} - \ln {\left( {\sqrt {2{\rm{x}} - 1} + 4} \right)^n} + C$ ở đó \(n \in {\mathbb{N}^*}\). Giá trị biểu thức \(S = \sin \dfrac{{n\pi }}{8}\) là:
Tính tích phân \(I=\int\limits_{0}^{3}{\frac{\text{d}x}{x+2}}\).
Tính tích phân \(I = \int\limits_0^\pi {{{\cos }^3}x\sin xdx} \)
Biết \(\int\limits_0^{\dfrac{\pi }{4}} {x.c{\rm{os}}2xdx} = a + b\pi \), với \(a,b\) là các số hữu tỉ. Tính \(S = a + 2b\).
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y={{x}^{2}}-4x+4\), trục tung, trục hoành. Giá trị của k để đường thẳng d đi qua \(A(0;4)\) có hệ số góc k chia (H) thành 2 phần có diện tích bằng nhau là
Cho hình phẳng D giới hạn bởi đường cong \(y={{\text{e}}^{x}}\), trục hoành và các đường thẳng \(x=0,x=1\). Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích $V$ bằng bao nhiêu?
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
Gọi ${z_1},{z_2}$ là các nghiệm của phương trình: $z + \dfrac{1}{z} = - 1$. Giá trị của $P = {z_1}^3 + {z_2}^3$ là:
Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10\).
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.
Trong không gian Oxyz, phương trình mặt phẳng đi qua ba điểm \(A\left( { - 3;0;0} \right);\,\,B\left( {0; - 2;0} \right);\) \(C\left( {0;0;1} \right)\) được viết dưới dạng \(ax + by - 6z + c = 0\). Giá trị của \(T = a + b - c\) là :
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).
Trong không gian Oxyz, mặt cầu đi qua bốn điểm \(A\left( {1;0;0} \right),\) \(B\left( {0; - 2;0} \right),\) \(C\left( {0;0;4} \right)\) và gốc tọa độ O có bán kính bằng
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A\left( {0; - 1;0} \right),B\left( {1;1; - 1} \right)$ và mặt cầu $(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0$. Mặt phẳng $(P)$ đi qua $A, B$ và cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( {2;0;0} \right);\,\,B\left( {0;4;0} \right);\,\,C\left( {0;0;6} \right)\). Điểm M thay đổi trên mặt phẳng \(\left( {ABC} \right)\) và điểm N là điểm trên tia OM sao cho \(OM.ON = 12\). Biết rằng khi M thay đổi, điểm N luôn thuộc một mặt cầu cố định. Tìm bán kính của mặt cầu đó?
Trong không gian \(Oxyz,\) cho mặt cầu \((S):{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 6,\) tiếp xúc với hai mặt phẳng \((P):x + y + 2z\, + \,5 = 0,\,\,(Q):2x - y + z\, - \,5 = 0\) lần lượt tại các tiếp điểm $A,\,\,B.$ Độ dài đoạn thẳng $AB$ là
Cho tích phân $I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x} = \dfrac{{m - \pi }}{{m + \pi }}$, giá trị của $m$ bằng :
Đặt \(S\) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số \(y = 4 - {x^2}\), trục hoành và đường thẳng \(x = - 2\), \(x = m\), \(\left( { - 2 < m < 2} \right)\). Tìm số giá trị của tham số \(m\) để \(S = \dfrac{{25}}{3}\).
Xét các số phức \(z,\,\,w\) thỏa mãn \(\left| z \right| = 2,\,\,\left| {iw - 2 + 5i} \right| = 1\). Giá trị nhỏ nhất của \(\left| {{z^2} - wz - 4} \right|\) bằng:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( {{Q}_{1}} \right):\,\,3x-y+4z+2=0\) và \(\left( {{Q}_{2}} \right):\,\,3x-y+4z+8=0\). Phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng \(\left( {{Q}_{1}} \right)\) và \(\left( {{Q}_{2}} \right)\) là: