Trong không gian tọa độ \(Oxyz\), tính thể tích khối tứ diện \(OBCD\) biết \(B\left( {2;0;0} \right),C\left( {0;1;0} \right),D\left( {0;0; - 3} \right)\).
Trả lời bởi giáo viên
Ta có: \(\overrightarrow {OB} = \left( {2;0;0} \right),\overrightarrow {OC} = \left( {0;1;0} \right),\overrightarrow {OD} = \left( {0;0; - 3} \right)\)
Do đó \(\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}0\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|} \right) = \left( {0;0;2} \right)\)
Suy ra \({V_{OBCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right].\overrightarrow {OD} } \right| = \dfrac{1}{6}\left| {0.0 + 0.0 + 2.\left( { - 3} \right)} \right| = 1\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích tứ diện \(ABCD\) là \({V_{ABCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)
Giải thích thêm:
Một số em áp dụng nhầm công thức \({V_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\) dẫn đến chọn nhầm đáp án B là sai.