Kết quả:
0/50
Thời gian làm bài: 00:00:00
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng (d) đi qua điểm \(A\left( 0;4 \right)\) và có hệ số góc k chia (H) thành hai phần có diện tích bằng nhau.
Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm
$A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)$. Gọi $H\left( {a;b;c} \right)$ là trực tâm của tam giác \(ABC\). Giá trị của $a + b + c$ bằng:
Tìm phần ảo \(b\) của số phức $w = \dfrac{1}{{2i}}\left( {z - \bar z} \right)$ với $z = 5 - 3i$.
Nguyên hàm của hàm số \(f\left( x \right) = \sin x + \cos x\) là :
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:
Cho hàm số \(f\left( x \right)\) liên tục trên \(R\) thỏa mãn \(\int\limits_a^d {f\left( x \right)dx} = 10;\int\limits_b^d {f\left( x \right)dx} = 18;\int\limits_a^c {f\left( x \right)dx} = 7\). Giá trị của \(\int\limits_b^c {f\left( x \right)dx} \) là:
Cho số phức \(z\) thỏa mãn\(|z - 1 - 2i| = 4\). Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(|z + 2 + i|\). Tính \(S = {M^2} + {m^2}\).
Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?
Cho hình phẳng $\left( H \right)$ giới hạn bởi các đường $y = - \,{x^2} + 2x$ và $y = 0$. Tính thể tích của khối tròn xoay tạo thành khi quay hình $\left( H \right)$ quanh trục $Oy$ là
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(M\left( {2; - 6;3} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 - 2t\\z = t\end{array} \right.\). Tọa độ hình chiếu vuông góc của \(M\) lên \(d\) là:
Tính tổng \(T\) của phần thực và phần ảo của số phức \(z = {\left( {\sqrt 2 + 3i} \right)^2}.\)
Cho ba điểm \(A,{\rm{ }}B,{\rm{ }}C\) lần lượt biểu diễn ba số phức \({z_1},{\rm{ }}{z_2},{\rm{ }}{z_3}\) với \({z_3} \ne {z_1}\) và \({z_3} \ne {z_2}.\) Biết \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\) và \({z_1} + {z_2} = 0.\) Mệnh đề nào sau đây là đúng?
Cho phương trình $4{z^4} + m{z^2} + 4 = 0$ trong tập số phức và \(m\) là tham số thực. Gọi \({z_1},{\rm{ }}{z_2},{\rm{ }}{z_3},{\rm{ }}{z_4}\) là bốn nghiệm của phương trình đã cho. Tìm tất cả các giá trị của \(m\) để \(\left( {z_1^2 + 4} \right)\left( {z_2^2 + 4} \right)\left( {z_3^2 + 4} \right)\left( {z_4^2 + 4} \right) = 324\).
Cho mặt phẳng \(\left( P \right):x - y + z = 1,\left( Q \right):x + z + y - 2 = 0\) và điểm \(M\left( {0;1;1} \right)\). Chọn kết luận đúng:
Trong không gian với hệ tọa độ vuông góc $Oxyz$, cho hai điểm $E\left( {2,1,1} \right),{\rm{ }}F\left( {0,3, - 1} \right)$. Mặt cầu $\left( S \right)$ đường kính $EF$ có phương trình là:
Gọi \(S\) là tổng phần thực và phần ảo của số phức $w = {z^3} - i$, biết $z$ thỏa mãn $z + 2 - 4i = \left( {2 - i} \right)\overline {iz} $. Mệnh đề nào sau đây đúng?
Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:
Tọa độ giao điểm của đường thẳng d có phương trình $d:\dfrac{{x + 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{{z + 2}}{3}$ với mặt phẳng (P) có phương trình $(P):x + 2y - z - 3 = 0$ là:
Cho hình phẳng giới hạn bởi $D = \left\{ {y = \tan x;\,\,y = 0;\,\,x = 0;\,\,x = \dfrac{\pi }{3}} \right\}.$ Thể tích vật tròn xoay khi $D$ quay quanh trục $Ox$ là $V = \pi \left( {a - \dfrac{\pi }{b}} \right),$ với $a,\,\,b \in R.$ Tính $T = {a^2} + 2b.$
Tập hợp các điểm biểu diễn hình học của số phức $z$ là đường thẳng $\Delta $ như hình vẽ. Tìm giá trị nhỏ nhất của \(\left| z \right|\).
Hoành độ điểm \(M\) thỏa mãn \(\overrightarrow {OM} = 2\overrightarrow j - \overrightarrow i + \overrightarrow k \) là:
Cho hai véc tơ \(\overrightarrow u = \left( {m;2;1} \right)\) và \(\overrightarrow v = \left( {0;n;p} \right)\). Biết \(\overrightarrow u = \overrightarrow v \), giá trị \(T = m - n + p\) bằng:
Trong không gian Oxyz, cho các điểm \(A\left( 2;-2;\ 1 \right),\ B\left( 1;-1;\ 3 \right).\) Tọa độ của vecto \(\overrightarrow{AB}\) là
Trong không gian với hệ tọa độ $Oxyz$ cho mặt phẳng $(\alpha ):4x + 3y - 7z + 3 = 0$ và điểm $I(0;1;1)$. Phương trình mặt phẳng $(\beta )$ đối xứng với $(\alpha )$ qua $I$ là:
Cho hai số phức ${z_1} = 2017 - i$ và ${z_2} = 2 - 2016i$. Tìm số phức $z = {z_1}.{z_2}.$
Viết phương trình mặt cầu có tâm $I\left( { - 1;2;3} \right)$ và tiếp xúc với mặt phẳng $\left( P \right):2x - y - 2z + 1 = 0$
Cho số phức $z = 3-2i$. Tìm phần thực và phần ảo của số phức \(\overline z \)
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\) , trục hoành, hai đường thẳng \(x = - 2;x = 3\) có công thức tính là
Cho hàm số \(y=f\left( x \right)\) có \(f'\left( x \right)=\frac{1}{x+1}\). Biết rằng \(f\left( 0 \right)=2018\). Giá trị của biểu thức \(f\left( 3 \right)-f\left( 1 \right)\) bằng:
Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \([0;\pi ]\) đạt giá trị bằng \(0\) ?
Tính tích phân \(I = \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}dx} \)
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{e^x}\sin x} \). Gọi \(a,b\) là các số nguyên thỏa mãn \(I = \dfrac{{{e^{\dfrac{\pi }{2}}} + a}}{b}\). Chọn kết luận đúng:
Cho \(\left( H \right)\) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình \(y=\frac{10}{3}x-{{x}^{2}}\), \(y=\left\{ \begin{align} & -x\,\,\,\,\,\,\,\text{khi}\,x\le 1 \\ & x-2\,\,\text{khi}\,\,x>1 \\ \end{align} \right.\). Diện tích của \(\left( H \right)\) bằng?
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y=x{{e}^{x}},\ \ y=0,\ x=0,\ x=1\) xung quanh trục \(Ox\) là:
Tìm môđun của số phức \(z\), biết \(\dfrac{1}{{{z^2}}} = \dfrac{1}{2} + \dfrac{1}{2}i.\)
Gọi ${z_{1,}}$${z_2}$ là các nghiệm phức của phương trình ${z^2} + 4z + 5 = 0$. Đặt $w = {\left( {1 + {z_1}} \right)^{100}} + {\left( {1 + {z_2}} \right)^{100}}$, khi đó
Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.
Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:
Cho \({z_1},{z_2}\) thỏa mãn \(|{z_1} - {z_2}| = 1\) và \(|{z_1} + {z_2}| = 3\). Tính \(\max T = |{z_1}| + |{z_2}|\)
Trong không gian với hệ tọa độ $Oxyz$, cho tứ diện \(ABCD\) có \(A(2; - 1;1)\), \(B(3;0; - 1)\), \(C(2; - 1;3)\) và $D$ thuộc trục $Oy$ . Tính tổng tung độ của các điểm $D$, biết thể tích tứ diện bằng $5$ .
Trong không gian với hệ tọa độ \(Oxyz,\) cho các điểm \(A\left( 0;1;2 \right),\,\,B\left( 2;-\,2;0 \right)\) và \(C\left( -\,2;0;1 \right).\) Mặt phẳng \(\left( P \right)\) đi qua \(A,\) trực tâm \(H\) của tam giác \(ABC\) và vuông góc với mặt phẳng \(\left( ABC \right)\) có phương trình là
Trong không gian với hệ tọa độ \(Oxyz\), cho \(d\) là đường thẳng đi qua gốc tọa độ \(O\), vuông góc với trục \(Ox\) và vuông góc với đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 1 - 3t\end{array} \right.\). Phương trình của \(d\) là:
Cho hình lập phương \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right),A'\left( {0;0;1} \right)\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\). Khoảng cách giữa \(MN\) và \(A'C\) là:
Trong không gian với hệ tọa độ \(Oxyz,\) cho các điểm \(A\left( -\,1;1;1 \right),\,\,B\left( 1;0;1 \right).\) Mặt phẳng \(\left( P \right)\) đi qua \(A,\,\,B\) và \(\left( P \right)\) cách điểm \(O\) một khoảng lớn nhất. Phương trình của mặt phẳng \(\left( P \right)\) là
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A\left( {0; - 1;0} \right),B\left( {1;1; - 1} \right)$ và mặt cầu $(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0$. Mặt phẳng $(P)$ đi qua $A, B$ và cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Cho điểm $A(0 ; 8 ; 2)$ và mặt cầu $(S)$ có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm $B(1 ; 1 ; -9)$. Viết phương trình mặt phẳng $(P)$ qua $A$ tiếp xúc với $(S)$ sao cho khoảng cách từ $B$ đến $(P)$ là lớn nhất. Giả sử \(\overrightarrow n = \left( {1;m;n} \right)\) là véctơ pháp tuyến của $(P)$. Lúc đó:
Cho hàm số \(y=f(x)\) có \(f'(x)\) liên tục trên nửa khoảng \(\left[ 0;+\infty \right)\) thỏa mãn \(3f(x)+f'(x)=\sqrt{1+3{{e}^{-2x}}}\) biết \(f(0)=\frac{11}{3}\). Giá trị \(f\left( \frac{1}{2}\ln 6 \right)\) bằng
Người ta cần trồng hoa tại phần đắt nằm phía ngoài đường tròn tâm gốc tọa độ $O$ , bán kính bằng \(\dfrac{1}{{\sqrt 2 }}\) và phía trong của Elip có độ dài trục lớn bằng \(2\sqrt 2 \) và độ dài trục nhỏ bằng $2$ (như hình vẽ bên). Trong mỗi một đơn vị diện tích cần bón \(\dfrac{{100}}{{(2\sqrt 2 - 1)\pi }}kg\) phân hữu cơ. Hỏi cần sử dụng bao nhiêu kg phân hữu cơ để bón cho hoa?
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( {{Q}_{1}} \right):\,\,3x-y+4z+2=0\) và \(\left( {{Q}_{2}} \right):\,\,3x-y+4z+8=0\). Phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng \(\left( {{Q}_{1}} \right)\) và \(\left( {{Q}_{2}} \right)\) là:
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y = 0\). Phương trình nào sau đây là phương trình đường thẳng qua \(A\left( { - 1;3; - 4} \right)\) cắt trục \(Ox\) và song song với mặt phẳng \(\left( P \right)\):