Câu hỏi:
2 năm trước

Cho hình phẳng $\left( H \right)$ giới hạn bởi các đường $y =  - \,{x^2} + 2x$ và $y = 0$. Tính thể tích của khối tròn xoay tạo thành khi quay hình $\left( H \right)$ quanh trục $Oy$ là

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có $y =  - \,{x^2} + 2x \Rightarrow {\left( {x - 1} \right)^2} = 1 - y \Rightarrow \left[ \begin{array}{l}{\rm{ }}x = 1 - \sqrt {1 - y} \\{\rm{ }}x = 1 + \sqrt {1 - y} \end{array} \right..$

Xét phương trình tung độ giao điểm \(1 - \sqrt {1 - y}  = 1 + \sqrt {1 - y}  \Leftrightarrow \sqrt {1 - y}  = 0 \Leftrightarrow y = 1\).

Khi đó, thể tích cần tính là $V = \pi \int\limits_0^1 {\left| {{{\left( {1 + \sqrt {1 - y} } \right)}^2} - {{\left( {1 - \sqrt {1 - y} } \right)}^2}} \right|{\rm{d}}y}  = \left| {\pi \int\limits_0^1 {4\sqrt {1 - y} \,{\rm{d}}y} } \right|$

Đặt \(\sqrt {1 - y}  = t \Leftrightarrow 1 - y = {t^2} \Leftrightarrow dy =  - 2tdt\)

Đổi cận: \(\left\{ \begin{array}{l}y = 0 \Leftrightarrow t = 1\\y = 1 \Leftrightarrow t = 0\end{array} \right.\)

Khi đó $V=\left| -\pi \int\limits_{1}^{0}{4t.2tdt} \right|=\left| 8\pi \int\limits_{0}^{1}{{{t}^{2}}dt} \right|=\left| 8\left. \pi \dfrac{{{t}^{3}}}{3} \right|_{0}^{1} \right|=\dfrac{8\pi }{3}$  

Hướng dẫn giải:

Rút hàm số theo biến y, \(x = f\left( y \right);x = g\left( y \right)\).

Giải phương trình tung độ giao điểm để tìm ra các cận $y = a$ và $y = b$.

Áp dụng công thức tính thể tích khối tròn khi xoay quanh trục $Oy$ của hình phẳng bị giới hạn bởi đồ thị các hàm số \(x = f\left( y \right),x = g\left( y \right),y = a,y = b\) là \(V = \pi\int\limits_a^b {\left| {{f^2}\left( y \right) - {g^2}\left( y \right)} \right|dy} \).

Giải thích thêm:

Học sinh cần phân biệt bài toán xoay quanh trục Ox và xoay quanh trục Oy.

Câu hỏi khác