Kết quả:
0/12
Thời gian làm bài: 00:00:00
Trong các tích phân sau, tích phân nào có giá trị bằng \(2\)?
Trong các khẳng định sau, khẳng định nào sai ?
Cho hai hàm số $y = f\left( x \right),\,\,y = g\left( x \right)$ là các hàm liên tục trên đoạn $\left[ {0;2} \right],$ có $\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 4,\,\,\int\limits_0^2 {g\left( x \right){\rm{d}}x} = - \,2$ và $\int\limits_1^2 {g\left( t \right){\rm{d}}t} = 1.$ Tính $I = \int\limits_0^1 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} .$
Tích phân \(\int\limits_{1}^{2}{{{(x+3)}^{2}}dx}\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?
Cho hàm số \(y = f(x)\)thỏa mãn hệ thức \(\int {f\left( x \right)\sin xdx} = - f(x).\cos x + \int {{\pi ^x}\cos xdx}. \) Hỏi \(y = f\left( x \right)\) là hàm số nào trong các hàm số sau:
Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?
Giả sử hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(k\) là một số thực trên \(R\). Cho các công thức:
a) \(\int\limits_a^a {f\left( x \right)dx} = 0\)
b) \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_b^a {f\left( x \right)dx} \)
c) \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \)
Số công thức sai là:
Nếu \(t = {x^2}\) thì:
Họ nguyên hàm của hàm số $f\left( x \right) = {x^2}\sqrt {4 + {x^3}} $ là:
Cho \(\int\limits_{1}^{2}{\frac{\text{d}x}{{{x}^{5}}+{{x}^{3}}}}=a.\ln 5+b.\ln 2+c\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a+2b+4c\) bằng
Biết \(\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=a\ln 5+b\ln 3+c}\) trong đó a, b, c là các số nguyên. Giá trị biểu thức \(T=a+b+c\) là