Câu hỏi:
2 năm trước

 Cho \(\int\limits_{1}^{2}{\frac{\text{d}x}{{{x}^{5}}+{{x}^{3}}}}=a.\ln 5+b.\ln 2+c\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a+2b+4c\) bằng

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có \(I=\int\limits_{1}^{2}{\frac{\text{d}x}{{{x}^{5}}+{{x}^{3}}}}=\int\limits_{1}^{2}{\frac{\text{d}x}{{{x}^{3}}\left( {{x}^{2}}+1 \right)}}=\frac{1}{2}\int\limits_{1}^{2}{\frac{2x\,\text{d}x}{{{x}^{4}}\left( {{x}^{2}}+1 \right)}}=\frac{1}{2}\int\limits_{1}^{2}{\frac{\text{d}\left( {{x}^{2}} \right)}{{{x}^{4}}\left( {{x}^{2}}+1 \right)}}=\frac{1}{2}\int\limits_{1}^{4}{\frac{\text{d}t}{{{t}^{2}}\left( t+1 \right)}}\)

Xét \(\int\limits_{1}^{4}{\frac{\text{d}t}{{{t}^{2}}\left( t+1 \right)}}=\int\limits_{1}^{4}{\frac{t+1-t}{{{t}^{2}}\left( t+1 \right)}\,\text{d}t}=\int\limits_{1}^{4}{\left( \frac{1}{{{t}^{2}}}-\frac{1}{t\left( t+1 \right)} \right)\,\text{d}t}=\int\limits_{1}^{4}{\frac{\text{d}t}{{{t}^{2}}}}-\int\limits_{1}^{4}{\frac{\text{d}t}{t\left( t+1 \right)}}\)

\(\begin{align}  & =\left. -\frac{1}{t} \right|_{1}^{4}-\int\limits_{1}^{4}{\left( \frac{1}{t}-\frac{1}{t+1} \right)dt=\frac{3}{4}-\left. \left( \ln t-\ln \left( t+1 \right) \right) \right|_{1}^{4}} \\ & =\frac{3}{4}-\ln 4+\ln 5-\ln 2=\frac{3}{4}-3\ln 2+\ln 5. \\\end{align}\)

Khi đó \(I=\frac{1}{2}\left( \frac{3}{4}-3\ln 2+\ln 5 \right)=\frac{1}{2}.\ln 5-\frac{3}{2}.\ln 2+\frac{3}{8}.\) Vậy \(a+2b+4c=-\,1.\)

Hướng dẫn giải:

Dựa vào phương pháp đổi biến số và tách phân thức trong dạng toán tích phân của hàm phân thức

Câu hỏi khác