Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(M\left( {2; - 6;3} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 - 2t\\z = t\end{array} \right.\). Tọa độ hình chiếu vuông góc của \(M\) lên \(d\) là:
Trả lời bởi giáo viên
Gọi \(H\) là hình chiếu vuông góc của \(M\) lên \(d\).
Suy ra \(H \in d\) nên \(H\left( {1 + 3t; - 2 - 2t;t} \right)\)\( \Rightarrow \overrightarrow {MH} = \left( {3t - 1;4 - 2t;t - 3} \right)\).
Đường thẳng \(d\) có một VTCP là \(\overrightarrow u = \left( {3; - 2;1} \right)\).
Ta có \(MH \bot d\) nên \(\overrightarrow {MH} .\overrightarrow u = 0 \Leftrightarrow 3\left( {3t - 1} \right) - 2\left( {4 - 2t} \right) + \left( {t - 3} \right) = 0\)\( \Leftrightarrow t = 1 \Rightarrow H\left( {4; - 4;1} \right)\).
Hướng dẫn giải:
- Gọi tọa độ điểm \(H\) là hình chiếu vuông góc của \(M\) lên \(d\).
- \(MH \bot d\) nên \(\overrightarrow {MH} .\overrightarrow u = 0\).