Tọa độ giao điểm của đường thẳng d có phương trình $d:\dfrac{{x + 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{{z + 2}}{3}$ với mặt phẳng (P) có phương trình $(P):x + 2y - z - 3 = 0$ là:
Trả lời bởi giáo viên
Giả sử M là giao điểm của (d) và (P).
$d:\dfrac{{x + 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{{z + 2}}{3} \Rightarrow d:\left\{ \begin{array}{l}x = - 1 + t\\y = 0 - t\\z = - 2 + 3t\end{array} \right.$
Lấy \(M \in (d) \Rightarrow M\left( { - 1 + t; - t; - 2 + 3t} \right)\)
Vì \(M \in (P) \Rightarrow - 1 + t + 2.( - t) - ( - 2 + 3t) - 3 = 0 \Leftrightarrow - 4t - 2 = 0 \Leftrightarrow t = - \dfrac{1}{2}\)
Suy ra ta có \(M\left( { - \dfrac{3}{2};\dfrac{1}{2}; - \dfrac{7}{2}} \right)\)
Hướng dẫn giải:
Chuyển phương trình đường thẳng d về dạng tham số. Suy ra tọa độ điểm \(M \in (d)\)
Sau đó thay tọa độ điểm M vào phương trình mặt phẳng để tìm tham số. Kết luận.