Cho \(\left( H \right)\) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình \(y=\frac{10}{3}x-{{x}^{2}}\), \(y=\left\{ \begin{align} & -x\,\,\,\,\,\,\,\text{khi}\,x\le 1 \\ & x-2\,\,\text{khi}\,\,x>1 \\ \end{align} \right.\). Diện tích của \(\left( H \right)\) bằng?
Trả lời bởi giáo viên
Hoành độ giao điểm của hai đồ thị hàm số \(y=-x\) và \(y=x-2\) là: \(-x=x-2\,\Leftrightarrow x=1\).
Diện tích hình phẳng cần tính là:\(S=\int\limits_{0}^{1}{\left( \frac{10}{3}x-{{x}^{2}}+x \right)\text{d}x}+\int\limits_{1}^{3}{\left( \frac{10}{3}x-{{x}^{2}}-x+2 \right)\text{d}x}\).
\(\Leftrightarrow S=\int\limits_{0}^{1}{\left( \frac{13}{3}x-{{x}^{2}} \right)\text{d}x}+\int\limits_{1}^{3}{\left( \frac{7}{3}x-{{x}^{2}}+2 \right)\text{d}x}\)
\(\Leftrightarrow S=\int\limits_{0}^{1}{\left( \frac{13}{3}x-{{x}^{2}} \right)\text{d}x}+\int\limits_{1}^{3}{\left( \frac{7}{3}x-{{x}^{2}}+2 \right)\text{d}x}\)
\(\Leftrightarrow S=\left. \left( \frac{13}{6}{{x}^{2}}-\frac{{{x}^{3}}}{3} \right)\, \right|_{\,0}^{1}+\left. \left( \frac{7}{6}{{x}^{2}}-\frac{{{x}^{3}}}{3}+2x \right)\, \right|_{1}^{3}=\frac{13}{2}\)
Hướng dẫn giải:
Chia thành các miền diện tích và áp dụng công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số