Bài tập hay và khó chương 3 về hệ phương trình

Câu 21 Trắc nghiệm

Hệ phương trình \(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right.\) có số nghiệm là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: \(xy \ne 0\).

     Hệ đã cho tương đương:

   $\left\{ \begin{array}{l}x + y + \dfrac{1}{x} + \dfrac{1}{y} = 5\\{x^2} + {y^2} + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{y^2}}} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x + \dfrac{1}{x}} \right) + \left( {y + \dfrac{1}{y}} \right) = 5\\{\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {y + \dfrac{1}{y}} \right)^2} = 13\end{array} \right.$.

Đặt $\left\{ \begin{array}{l}\left( {x + \dfrac{1}{x}} \right) + \left( {y + \dfrac{1}{y}} \right) = S\\\left( {x + \dfrac{1}{x}} \right).\left( {y + \dfrac{1}{y}} \right) = P\end{array} \right.$

Hệ trở thành:

\(\left\{ \begin{array}{l}{S^2} - 2P = 13\\S = 5\end{array} \right. \Leftrightarrow S = 5,P = 6\)\( \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{1}{x} = 2;y + \dfrac{1}{y} = 3\\x + \dfrac{1}{x} = 3;y + \dfrac{1}{y} = 2\end{array} \right.\). \( \Leftrightarrow \left[ \begin{array}{l}x = 1;y = \dfrac{{3 \pm \sqrt 5 }}{2}\\x = \dfrac{{3 \pm \sqrt 5 }}{2};y = 1\end{array} \right.\).

Vậy hệ đã cho có bốn nghiệm: \(\left( {x;y} \right) = \left( {1;\dfrac{{3 \pm \sqrt 5 }}{2}} \right),\)\(\left( {x;y} \right)=\left( {\dfrac{{3 \pm \sqrt 5 }}{2};1} \right) \).

Câu 22 Trắc nghiệm

Hệ phương trình \(\left\{ \begin{array}{l}{x^3}y\left( {1 + y} \right) + {x^2}{y^2}\left( {2 + y} \right) + x{y^3} - 30 = 0\\{x^2}y + x\left( {1 + y + {y^2}} \right) + y - 11 = 0\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\)  mà \(x < 1\) ?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Hệ tương đương với : \(\left\{ \begin{array}{l}xy\left( {x + y} \right)\left( {x + y + xy} \right) = 30\\xy\left( {x + y} \right) + x + y + xy = 11\end{array} \right.\).

Đặt \(xy\left( {x + y} \right) = a;xy + x + y = b\). Ta thu được hệ:

\(\left\{ \begin{array}{l}ab = 30\\a + b = 11\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 5;b = 6\\a = 6;b = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}xy\left( {x + y} \right) = 5\\xy + x + y = 6\end{array} \right.\\\left\{ \begin{array}{l}xy\left( {x + y} \right) = 6\\xy + x + y = 5\end{array} \right.\end{array} \right.\).

TH1: \(\left\{ \begin{array}{l}xy\left( {x + y} \right) = 6\\xy + x + y = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}xy = 2\\x + y = 3\end{array} \right.\\\left\{ \begin{array}{l}xy = 3\\x + y = 2\end{array} \right.(L)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2;y = 1\\x = 1;y = 2\end{array} \right.\)

TH2: \(\left\{ \begin{array}{l}xy\left( {x + y} \right) = 5\\xy + x + y = 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}xy = 5\\x + y = 1\end{array} \right.(L)\\\left\{ \begin{array}{l}xy = 1\\x + y = 5\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{5 - \sqrt {21} }}{2};y = \dfrac{{5 + \sqrt {21} }}{2}\\x = \dfrac{{5 + \sqrt {21} }}{2};y = \dfrac{{5 - \sqrt {21} }}{2}\end{array} \right.\).

Vậy hệ có nghiệm: \(\left( {x;y} \right) = \left( {1;2} \right),\left( {2;1} \right),\left( {\dfrac{{5 \pm \sqrt {21} }}{2};\dfrac{{5 \mp \sqrt {21} }}{2}} \right)\)

Suy ra có một cặp nghiệm thỏa mãn đề bài là \(\left( {\dfrac{{5 - \sqrt {21} }}{2};\dfrac{{5 + \sqrt {21} }}{2}} \right)\) .

Câu 23 Trắc nghiệm

Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x  = 2y\\{y^2} + \sqrt y  = 2x\end{array} \right.\)  có bao nhiêu cặp nghiệm \(\left( {x;y} \right) \ne \left( {0;0} \right)\) ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: \(x,y \ge 0\). Trừ hai phương trình của hệ cho nhau ta thu được:

\( {x^2} + \sqrt x  - \left( {{y^2} + \sqrt y } \right) = 2\left( {y - x} \right)\)\( \Leftrightarrow \left( {\sqrt x  - \sqrt y } \right)\left[ {\left( {\sqrt x  + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x  + \sqrt y } \right)} \right] = 0\)

Vì \(\left( {\sqrt x  + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x  + \sqrt y } \right) > 0\)

nên phương trình đã cho tương đương với: \(x = y\).

Thay \(x = y\)  vào phương trình \({x^2} + \sqrt x  = 2y\)  ta được \({x^2} + \sqrt x  = 2x\)

\( \Leftrightarrow {x^2} - 2x + \sqrt x  = 0 \Leftrightarrow {x^2} - x - x + \sqrt x  = 0 \Leftrightarrow x\left( {x - 1} \right) - \sqrt x \left( {\sqrt x  - 1} \right) = 0\)

\( \Leftrightarrow x\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right) - \sqrt x \left( {\sqrt x  - 1} \right) = 0\)

 \( \Leftrightarrow \sqrt x \left( {\sqrt x  - 1} \right)\left( {x + \sqrt x  - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 0\\x = 1 \Rightarrow y = 1\\x + \sqrt x  - 1 = 0\,\left( * \right)\end{array} \right.\)

Ta có \({\rm{pt}}\,\,\left( * \right) \Leftrightarrow {\left( {\sqrt x  + \dfrac{1}{2}} \right)^2} - \dfrac{5}{4} = 0 \)\(\Leftrightarrow {\left( {\sqrt x  + \dfrac{1}{2}} \right)^2} = {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2}\)

 \( \Leftrightarrow \left[ \begin{array}{l}\sqrt x  = \dfrac{{\sqrt 5  - 1}}{2}\\\sqrt x  = \dfrac{{ - \sqrt 5  - 1}}{2}\left( L \right)\end{array} \right. \)\(\Rightarrow x = \dfrac{{3 - \sqrt 5 }}{2} \Rightarrow y = \dfrac{{3 - \sqrt 5 }}{2}\)

Vậy hệ có 3 cặp nghiệm: $\left( {x;y} \right) \in \left\{ {\left( {0;0} \right),\left( {1;1} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};\dfrac{{3 - \sqrt 5 }}{2}} \right)} \right\}$

Suy ra có hai cặp nghiệm thỏa mãn đề bài.

Câu 24 Trắc nghiệm

Hệ phương trình \(\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {{y^2} + 6} \right) = y\left( {{x^2} + 1} \right)\\\left( {y - 1} \right)\left( {{x^2} + 6} \right) = x\left( {{y^2} + 1} \right)\end{array} \right.\)  có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\)  mà \(x > y\)  ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Hệ đã cho \( \Leftrightarrow \left\{ \begin{array}{l}x{y^2} + 6x - {y^2} - 6 = y{x^2} + y\\y{x^2} + 6y - {x^2} - 6 = x{y^2} + x\end{array} \right.\)

Trừ vế theo vế hai phương trình của hệ ta được:

\(\begin{array}{l}2xy\left( {y - x} \right) + 7\left( {x - y} \right) + \left( {x - y} \right)\left( {x + y} \right) = 0 \\\Leftrightarrow \left( {x - y} \right)\left( {x + y - 2xy + 7} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = y\\x + y - 2xy + 7 = 0\end{array} \right.\end{array}\)

+   Nếu \(x = y\) thay vào hệ ta có: \({x^2} - 5x + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = y = 2\\x = y = 3\end{array} \right.\)

+   Nếu \(x + y - 2xy + 7 = 0 \)

$\begin{array}{l}
\Leftrightarrow 2x + 2y - 4xy + 14 = 0\\
\Leftrightarrow \left( {2x - 1} \right) + 2y\left( {1 - 2x} \right) = - 15\\
\Leftrightarrow \left( {1 - 2x} \right)\left( {1 - 2y} \right) = 15
\end{array}$

 Mặt khác khi cộng hai phương trình của hệ đã cho ta được:

 \({x^2} + {y^2} - 5x - 5x + 12 = 0 \)$ \Leftrightarrow 4{x^2} - 20x + 25 + 4{y^2} - 20y + 25 - 2 = 0$

\(\Leftrightarrow {\left( {2x - 5} \right)^2} + {\left( {2y - 5} \right)^2} = 2\).

Đặt \(a = 2x - 5,b = 2y - 5\)

 Ta có: \(\left\{ \begin{array}{l}{a^2} + {b^2} = 2\\\left( {a + 4} \right)\left( {b + 4} \right) = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {a + b} \right)^2} - 2ab = 2\\ab + 4\left( {a + b} \right) =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a + b = 0\\ab =  - 1\end{array} \right.\\\left\{ \begin{array}{l}a + b =  - 8\\ab = 31\end{array} \right.\end{array} \right.\)

Trường hợp 1: \(\left\{ \begin{array}{l}a + b = 0\\ab =  - 1\end{array} \right. \Leftrightarrow \left( {x;y} \right) = \left( {3;2} \right),\left( {2;3} \right)\)

Trường hợp 2: \(\left\{ \begin{array}{l}a + b =  - 8\\ab = 31\end{array} \right.\) vô nghiệm.

Vậy nghiệm của hệ đã cho là: \(\left( {x;y} \right) \in \left\{ {\left( {2;2} \right),\left( {3;3} \right),\left( {2;3} \right),\left( {3;2} \right)} \right\}\)

Suy ra có \(1\) cặp nghiệm thỏa mãn yêu cầu bài toán  là \(\left( {x;y} \right) = \left( {3;2} \right).\)

Câu 25 Trắc nghiệm

Cho hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{{xy}} = \dfrac{x}{z} + 1\\\dfrac{1}{{yz}} = \dfrac{y}{x} + 1\\\dfrac{1}{{zx}} = \dfrac{z}{y} + 1\end{array} \right.\). Số nghiệm của hệ phương trình trên là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện \(xyz \ne 0\) . Nhận thấy nếu một trong ba số \(x,y,z\)  có một số âm, chẳng hạn \(x < 0\)  thì phương trình thứ 3 vô nghiệm. Nếu hai trong số ba số \(x,y,z\) là số âm, chẳng hạn \(x,y < 0\)  thì phương trình thứ 2 vô nghiệm. Vậy ba số \(x,y,z\) cùng dấu.

Ta có \(\left\{ \begin{array}{l}\dfrac{1}{{xy}} = \dfrac{x}{z} + 1\\\dfrac{1}{{yz}} = \dfrac{y}{x} + 1\\\dfrac{1}{{zx}} = \dfrac{z}{y} + 1\end{array} \right.\)

$\Leftrightarrow \left\{ \begin{array}{l}
\dfrac{1}{{xyz}} = \dfrac{x}{{{z^2}}} + \dfrac{1}{z}\\
\dfrac{1}{{xyz}} = \dfrac{y}{{{x^2}}} + \dfrac{1}{x}\\
\dfrac{1}{{xyz}} = \dfrac{z}{{{y^2}}} + \dfrac{1}{y}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\dfrac{1}{{xyz}} = \dfrac{{x + z}}{{{z^2}}}\\
\dfrac{1}{{xyz}} = \dfrac{{y + x}}{{{x^2}}}\\
\dfrac{1}{{xyz}} = \dfrac{{z + y}}{{{y^2}}}
\end{array} \right.$

\( \bullet \) Trường hợp 1: \(x,y,z > 0\)

Nếu \(x \ge y\)  chia hai vế của phương trình thứ hai cho hai vế của phươngng trình thứ ba của hệ ta được \(\dfrac{{{x^2}}}{{{y^2}}} = \dfrac{{x + y}}{{y + z}}\)\( \Rightarrow x \ge z\)

Với \(x \ge z\) chia hai vế phương trình thứ nhất cho phương trình thứ hai: \(\dfrac{{{z^2}}}{{{x^2}}} = \dfrac{{x + z}}{{y + x}} \Rightarrow z \le y\)

Với \(z \le y\) chia phương trình thứ nhất cho phương trình thứ ba: \(\dfrac{{{z^2}}}{{{y^2}}} = \dfrac{{x + z}}{{y + z}} \Rightarrow x \le y\)

Suy ra \(x = y = z\)  thay vào hệ phương trình đã cho ta tìm được $\dfrac{1}{{{x^2}}} = 2 \Rightarrow x = \sqrt 2 \,\,\left( {x > 0} \right)$ suy ra nghiệm \(x = y = z = \dfrac{{\sqrt 2 }}{2}\)

\( \bullet \) Trường hợp 2: \(x,y,z < 0\) ta làm tương tự, tìm được thêm nghiệm \(x = y = z =  - \dfrac{{\sqrt 2 }}{2}\)

Vậy hệ phương trình có $2$  nghiệm.

Câu 26 Trắc nghiệm

Cho hệ phương trình \(\left\{ \begin{array}{l}{y^3} - {x^3} = 1\\{x^5} - {y^5} + xy = 0\end{array} \right.\) . Khẳng định nào trong các khẳng định sau đúng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét phương trình \({x^5} - {y^5} + xy = 0 \Leftrightarrow {x^5} - {y^5} + xy({y^3} - {x^3}) = 0 \Leftrightarrow (x - y)({x^4} + {y^4}) = 0\)

$ \Leftrightarrow \left[ \begin{array}{l}x - y = 0\\{x^4} + {y^4} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y\\x = y = 0\end{array} \right. \Leftrightarrow x = y $

Thử lại \(x = y\) không thỏa mãn phương trình đầu của hệ.

Vậy hệ vô nghiệm.

Câu 27 Trắc nghiệm

Cho \((x;y;z)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{x^3} + 3{x^2} + 2x - 5 = y\\{y^3} + 3{y^2} + 2y - 5 = z\\{z^3} + 3{z^2} + 2z - 5 = x\end{array} \right.\)

Khẳng định nào trong các khẳng định sau là sai:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Cộng vế với vế của từng phương trình với nhau ta được:

\(\begin{array}{l}\,\,\,\,\,\,\,\,({x^3} + 3{x^2} + x - 5) + ({y^3} + 3{y^2} + y - 5) + ({z^3} + 3{z^2} + z - 5) = 0\\ \Leftrightarrow (x - 1)({x^2} + 4x + 5) + (y - 1)({y^2} + 4y + 5) + (z - 1)({z^2} + 4z + 5) = 0\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Nếu \(x > 1 \Rightarrow {z^3} + 3{z^2} + 2z - 5 > 1 \Leftrightarrow (z - 1)({z^2} + 4x + 6) > 0 \Rightarrow z > 1\)

Tương tự với \(z > 1 \Rightarrow y > 1\)

Suy ra \(VT(1) > 0\) (phương trình vô nghiệm)

Chứng minh tương tự với \(x < 1\) ta cũng được phương trình (1) vô nghiệm

Suy ra phương trình (1) có nghiệm duy nhất \(x = y = z = 1\)

Câu 28 Trắc nghiệm

Cho \((x;y;z)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}36{x^2}y - 60{x^2} + 25y = 0\\36{y^2}z - 60{y^2} + 25z = 0\\36{z^2}x - 60{z^2} + 25x = 0\end{array} \right.\) 

Giá trị nhỏ nhất của \(A = x + y + z\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\(\left\{ \begin{array}{l}36{x^2}y - 60{x^2} + 25y = 0\\36{y^2}z - 60{y^2} + 25z = 0\\36{z^2}x - 60{z^2} + 25x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{60{x^2}}}{{36{x^2} + 25}}\\z = \dfrac{{60{y^2}}}{{36{y^2} + 25}}\\x = \dfrac{{60{z^2}}}{{36{z^2} + 25}}\end{array} \right. \Rightarrow x,y,z \ge 0\)

Nhận thấy \(x = y = z = 0\) là 1 nghiệm của hệ phương trình

Xét \(x > 0;y > 0;z > 0\) áp dụng bất đẳng thức Cosi cho 2 số không âm, ta có:

\(36{x^2} + 25 \ge 2\sqrt {36{x^2}.25}  = 60\left| x \right| \ge 60x \Rightarrow y \le x\)

Chứng minh tương tự, ta được \(z \le y;x \le z \Rightarrow x \le z \le y \le x \Rightarrow x = y = z\)

Thay vào phương trình (1) ta được \(36{x^3} - 60{x^2} + 25x = 0 \Leftrightarrow x = \dfrac{5}{6}\) hay \(x = y = z = \dfrac{5}{6}\)

Suy ra giá trị nhỏ nhất của \(A = x + y + z = 0\) (khi \(x = y = z = 0\) )

Câu 29 Trắc nghiệm

Cho hệ phương trình $\left\{ \begin{array}{l}{\rm{ - ax}} + y = 3\\\left| {x + 1} \right| + y = 2\end{array} \right.$. Giá trị của a để hệ phương trình có nghiệm duy nhất là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:  $\left\{ \begin{array}{l} - ax + y = 3\\\left| {x + 1} \right| + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = ax + 3\\\left| {x + 1} \right| + ax + 3 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = ax + 3\\\left| {x + 1} \right| + ax + 1 = 0\end{array} \right.$

Nếu \(x \ge  - 1\) ta có \(x + 1 + ax + 1 = 0 \Rightarrow x(a + 1) =  - 2\)   \((1)\)

Phương trình \((1)\) có nghiệm duy nhất \( \Leftrightarrow a \ne  - 1 \Rightarrow x = \dfrac{{ - 2}}{{a + 1}} \Rightarrow y = \dfrac{{a + 3}}{{a + 1}}\)

Do \(x \ge  - 1 \Leftrightarrow \dfrac{{ - 2}}{{a + 1}} \ge  - 1 \Leftrightarrow \dfrac{{ - 2}}{{a + 1}} + 1 \ge 0 \Leftrightarrow \dfrac{{a - 1}}{{a + 1}} \ge 0 \Leftrightarrow \left\{ \begin{array}{l}(a - 1)(a + 1) \ge 0\\a \ne  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a \ge 1\\a <  - 1\end{array} \right.\)

Nếu \(x <  - 1\) ta có \( - x - 1 + ax + 1 = 0 \Rightarrow (a - 1)x = 0\)  \((2)\)

Nếu \(a = 1\) thì (2) là \(0x = 0\) đúng với mọi \(x <  - 1\) nên (2) có vô số nghiệm hay hệ đã cho có vô số nghiệm. (loại)

Nếu \(a \ne 1\) thì (2) có nghiệm duy nhất \(x = 0\) (loại do \(x <  - 1\)). Do đó \((2)\) vô nghiệm khi \(a \ne 1\).

Để hệ phương trình đã cho có nghiệm duy nhất thì có 2 trường hợp:

Trường hợp 1: Phương trình \((1)\) vô nghiệm và phương trình \((2)\)  có nghiệm duy nhất.

Trường hợp này không xảy ra vì \((2)\) chỉ có thể vô nghiệm hoặc vô số nghiệm.

Trường hợp 2: Phương trình \((1)\) có nghiệm duy nhất và phương trình \((2)\) vô nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a \ge 1\\a <  - 1\end{array} \right.\\a \ne 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a > 1\\a <  - 1\end{array} \right.\)

Câu 30 Trắc nghiệm

Giải hệ phương trình: \(\left\{ \begin{array}{l}\sqrt {2x + 3}  + \sqrt {4 - y}  = 4{\rm{    }}\left( 1 \right)\\\sqrt {2y + 3}  + \sqrt {4 - x}  = 4{\rm{    }}\left( 2 \right)\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện:  \(\left\{ \begin{array}{l} - \dfrac{3}{2} \le x \le 4\\ - \dfrac{3}{2} \le x \le 4\end{array} \right.\)

\(\begin{array}{l}\left( 1 \right) - \left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3}  + \sqrt {4 - y}  = 4\\\left( {\sqrt {2x + 3}  - \sqrt {2y + 3} } \right) + \left( {\sqrt {4 - y}  - \sqrt {4 - x} } \right) = 0\end{array} \right.\\{\rm{    }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3}  + \sqrt {4 - y}  = 4\\\dfrac{{2\left( {x - y} \right)}}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \dfrac{{x - y}}{{\sqrt {4 - x}  + \sqrt {4 - y} }} = 0\end{array} \right.\\{\rm{    }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3}  + \sqrt {4 - y}  = 4\\\left( {x - y} \right)\left( {\dfrac{2}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \dfrac{1}{{\sqrt {4 - x}  + \sqrt {4 - y} }}} \right) = 0\end{array} \right.\\{\rm{    }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3}  + \sqrt {4 - y}  = 4\\x - y = 0\end{array} \right.{\rm{ }}\left( {do:\dfrac{2}{{\sqrt {2x + 3}  + \sqrt {2y + 3} }} + \dfrac{1}{{\sqrt {4 - x}  + \sqrt {4 - y} }} > 0} \right)\\{\rm{    }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3}  + \sqrt {4 - x}  = 4\\x = y\end{array} \right.\\{\rm{    }} \Leftrightarrow \left\{ \begin{array}{l}x + 7 + 2\sqrt {\left( {2x + 3} \right)\left( {4 - x} \right)}  = 16\\x = y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y = 3\\x = y = \dfrac{{11}}{9}\end{array} \right.\end{array}\)

So với điều kiện, hệ có hai nghiệm: \(S = \left( {x;y} \right) = \left\{ {\left( {3;3} \right),\left( {\dfrac{{11}}{9};\dfrac{{11}}{9}} \right)} \right\}\).

Câu 31 Trắc nghiệm

Giải hệ phương trình : \(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} + y + \dfrac{1}{y} = 5\\{x^2} + \dfrac{1}{{{x^2}}} + {y^2} + \dfrac{1}{{{y^2}}} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} + y + \dfrac{1}{y} = 5\\{\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {y + \dfrac{1}{y}} \right)^2} = 13\end{array} \right.\)

Đặt \(x + \dfrac{1}{x} = a;y + \dfrac{1}{y} = b\) ta có:

\(\left\{ \begin{array}{l}a + b = 5\\{a^2} + {b^2} = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5 - b\\{(5 - b)^2} + {b^2} = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 5\\(b - 2)(b - 3) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\\\left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right.\end{array} \right.\)

Giải \(\left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} = 2\\y + \dfrac{1}{y} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = \dfrac{{3 \pm \sqrt 5 }}{2}\end{array} \right.\)

Giải \(\left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} = 3\\y + \dfrac{1}{y} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = \dfrac{{3 \pm \sqrt 5 }}{2}\end{array} \right.\)

Vậy hệ đã cho có nghiệm\(\left( {x;y} \right)\) là : \(\left( {1;\dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2};1} \right)\)

Câu 32 Trắc nghiệm

Giải hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 2x - y\\{y^2} = 2y - z\\{z^2} = 2z - t\\{t^2} = 2t - x\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\left\{ \begin{array}{l}{x^2} = 2x - y\\{y^2} = 2y - z\\{z^2} = 2z - t\\{t^2} = 2t - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {1 - x} \right)^2} = 1 - y \ge 0\\{\left( {1 - y} \right)^2} = 1 - z \ge 0\\{\left( {1 - z} \right)^2} = 1 - t \ge 0\\{\left( {1 - t} \right)^2} = 1 - x \ge 0\end{array} \right.\)

Đặt \(\left\{ \begin{array}{l}b = 1 - y \ge 0\\c = 1 - z \ge 0\\d = 1 - t \ge 0\\a = 1 - x \ge 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a^2} = b\\{b^2} = c\\{c^2} = d\\{d^2} = a\end{array} \right.\)

+) Xét \(a = 0 \Rightarrow b = c = d = 0 \Rightarrow x = y = z = t = 1\)

+) Xét \(a \ne 0 \Rightarrow b;c;d \ne 0\).

Ta có \(\left\{ \begin{array}{l}{a^2} = b\\{b^2} = c\\{c^2} = d\\{d^2} = a\end{array} \right.\) nhân theo vế ta có \({\left( {abcd} \right)^2} - abcd = 0 \Leftrightarrow abcd = 1\)( vì \(abcd \ne 0\))

Mặt khác \(\left\{ \begin{array}{l}{a^2} = b \ge 0\\{b^2} = c \ge 0\\{c^2} = d \ge 0\\{d^2} = a \ge 0\end{array} \right. \Rightarrow {a^2} + {b^2} + {c^2} + {d^2} = a + b + c + d\)

\(\begin{array}{l} \Leftrightarrow 2{a^2} + 2{b^2} + 2{c^2} + 2{d^2} - 2a + 2b + 2c + 2d = 0\\ \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 1} \right)^2} + {\left( {d - 1} \right)^2} + {a^2} + {b^2} + {c^2} + {d^2} - 4 = 0\end{array}\)

Ta có \({a^2} + {b^2} + {c^2} + {d^2} \ge 4\sqrt[4]{{{a^2}{b^2}{c^2}{d^2}}} = 4\)

\( \Rightarrow {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 1} \right)^2} + {\left( {d - 1} \right)^2} + {a^2} + {b^2} + {c^2} + {d^2} - 4 \ge 0\).

Dấu “=” xảy ra \( \Leftrightarrow a = b = c = d = 1 \Rightarrow x = y = z = t = 0\).

Vậy hệ phương trình có nghiệm \(\left( {x;y;z;t} \right)\)là \(\left( {0;0;0;0} \right);\left( {1;1;1;1} \right)\).

Câu 33 Trắc nghiệm

Tìm các số thực \(x\) và \(y\) thỏa mãn \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18\\{y^3} = {x^2} + 18\end{array} \right.\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét hệ phương trình \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18\,\,\,\left( 1 \right)\\{y^3} = {x^2} + 18\,\,\,\left( 2 \right)\end{array} \right.\).

Trừ vế theo vế của phương trình (1) và (2) ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,{x^3} - {y^3} = {y^2} - {x^2}\\ \Leftrightarrow \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) =  - \left( {x - y} \right)\left( {x + y} \right)\\ \Leftrightarrow \left( {x - y} \right)\left( {{x^2} + xy + {y^2} + x + y} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - y = 0\\{x^2} + xy + {y^2} + x + y = 0\end{array} \right.\end{array}\)

TH1: \(x - y = 0 \Leftrightarrow x = y\).

Thay vào phương trình (1) ta có:

\(\begin{array}{l}\,\,\,\,\,\,{x^3} = {x^2} + 18 \Leftrightarrow {x^3} - {x^2} - 18 = 0\\ \Leftrightarrow {x^3} - 27 - {x^2} + 9 = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - \left( {x - 3} \right)\left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + 2x + 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0 \Leftrightarrow x = 3\\{x^2} + 2x + 6 = 0\end{array} \right.\end{array}\)

Xét phương trình \({x^2} + 2x + 6 = 0 \Leftrightarrow {\left( {x + 1} \right)^2} + 5 = 0\) (vô nghiệm do \({\left( {x + 1} \right)^2} + 5 \ge 5 > 0\,\,\,\forall x\))

Với \(x = 3 \Rightarrow y = 3\) \( \Rightarrow \) Hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {3;3} \right)\).

TH2: \({x^2} + xy + {y^2} + x + y = 0\).

Vì  \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18 \ge 18 \Rightarrow x \ge \sqrt[3]{{18}} > 0\\{y^3} = {x^2} + 18 \ge 18 \Rightarrow y \ge \sqrt[3]{{18}} > 0\end{array} \right. \Rightarrow x + y > 0\)

Lại có \({x^2} + xy + {y^2} = {x^2} + 2x.\dfrac{1}{2}y + \dfrac{1}{4}{y^2} + \dfrac{3}{4}{y^2} = {\left( {x + \dfrac{1}{2}y} \right)^2} + \dfrac{3}{4}{y^2} \ge 0\,\,\forall x,\,\,y\). 

Do đó \({x^2} + xy + {y^2} + x + y > 0\,\,\forall x,y\), do đó phương trình \({x^2} + xy + {y^2} + x + y = 0\) vô nghiệm.

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;3} \right)\).

Câu 34 Trắc nghiệm

Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3} + 2{y^2} + x{y^2} = 2 + x - 2{x^2}\\4{y^2} = \left( {\sqrt {{y^2} + 1}  + 1} \right)\left( {{y^2} - {x^3} + 3x - 2} \right)\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt \(\left\{ \begin{array}{l}{x^3} + 2{y^2} + x{y^2} = 2 + x - 2{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\4{y^2} = \left( {\sqrt {{y^2} + 1}  + 1} \right)\left( {{y^2} - {x^3} + 3x - 2} \right)\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

\(\begin{array}{l}\left( 1 \right) \Leftrightarrow \left( {{x^3} + 2{x^2} - x - 2} \right) + \left( {2{y^2} + x{y^2}} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 1} \right) + {y^2}\left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 1 + {y^2}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\{x^2} - 1 + {y^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\{y^2} = 1 - {x^2}\end{array} \right.\end{array}\)

TH1: \(x =  - 2\) thay vào \(\left( 2 \right)\) được:

\(\begin{array}{l}4{y^2} = \left( {\sqrt {{y^2} + 1}  + 1} \right)\left( {{y^2} + 8 - 6 - 2} \right) \Leftrightarrow 4{y^2} = \left( {\sqrt {{y^2} + 1}  + 1} \right).{y^2}\\ \Leftrightarrow {y^2}\left( {\sqrt {{y^2} + 1}  + 1 - 4} \right) = 0 \Leftrightarrow {y^2}\left( {\sqrt {{y^2} + 1}  - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{y^2} = 0\\\sqrt {{y^2} + 1}  - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 0\\{y^2} + 1 = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 0\\{y^2} = 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 0\\y =  \pm 2\sqrt 2 \end{array} \right.\end{array}\)

TH2: \({y^2} = 1 - {x^2}\) thay vào (2) được:

\(\begin{array}{l}4\left( {1 - {x^2}} \right) = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {1 - {x^2} - {x^3} + 3x - 2} \right)\\ \Leftrightarrow 4\left( {1 - {x^2}} \right) = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( { - {x^3} - {x^2} + 3x - 1} \right)\\ \Leftrightarrow 4\left( {{x^2} - 1} \right) = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {{x^3} + {x^2} - 3x + 1} \right)\\ \Leftrightarrow 4\left( {{x^2} - 1} \right) = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {x - 1} \right)\left( {{x^2} + 2x - 1} \right)\\ \Leftrightarrow 4\left( {x - 1} \right)\left( {x + 1} \right) = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {x - 1} \right)\left( {{x^2} + 2x - 1} \right)\\ \Leftrightarrow \left( {x - 1} \right)\left[ {4x + 4 - \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {{x^2} + 2x - 1} \right)} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\4x + 4 - \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {{x^2} + 2x - 1} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\4x + 4 = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {{x^2} + 2x - 1} \right)\end{array} \right.\end{array}\)

Với \(x = 1\) thì \({y^2} = 1 - 1 = 0 \Leftrightarrow y = 0\).

Với \(4x + 4 = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {{x^2} + 2x - 1} \right)\)  ta có:

\(\begin{array}{l}4x + 4 = \left( {\sqrt {2 - {x^2}}  + 1} \right)\left( {{x^2} + 2x - 1} \right)\\ \Leftrightarrow 4x + 4 = \sqrt {2 - {x^2}} \left( {{x^2} + 2x - 1} \right) + {x^2} + 2x - 1\\ \Leftrightarrow \sqrt {2 - {x^2}} \left( {{x^2} + 2x - 1} \right) =  - {x^2} + 2x + 5\\ \Leftrightarrow \sqrt {2 - {x^2}}  = \dfrac{{ - {x^2} + 2x + 5}}{{{x^2} + 2x - 1}}\\ \Leftrightarrow \sqrt {2 - {x^2}}  = \dfrac{{6 - {{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} - 2}}\,\,\,\,\,\left( * \right)\end{array}\)

(Do \({x^2} + 2x - 1 = 0 \Leftrightarrow x =  - 1 \pm \sqrt 2 \) không thỏa mãn phương trình)

Vì \({x^2} + {y^2} = 1\) nên \({x^2} \le 1 \Rightarrow  - 1 \le x \le 1\)

\( \Rightarrow 1 \le \sqrt {2 - {x^2}}  \le \sqrt 2 \) hay \(1 \le VT\left( * \right) \le \sqrt 2 \)

Lại có,

Với \(x \le 1\) thì \(\dfrac{{6 - {{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} - 2}} \ge \dfrac{{6 - {{\left( {1 - 1} \right)}^2}}}{{{{\left( {1 + 1} \right)}^2} - 2}} = 3 \Rightarrow VP\left( * \right) \ge 3\)

Với \(x \ge  - 1\) thì \(\dfrac{{6 - {{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} - 2}} \le \dfrac{{6 - {{\left( { - 1 - 1} \right)}^2}}}{{{{\left( { - 1 + 1} \right)}^2} - 2}} =  - 1 \Rightarrow VP\left( * \right) \le  - 1\)

Do đó với \( - 1 \le x \le 1\) thì \(VP\left( * \right) \ge 3\) hoặc .

\( \Rightarrow \) (*) vô nghiệm do \(1 \le VT\left( * \right) \le \sqrt 2 \) và \(VP\left( * \right) \ge 3\) hoặc \(VP\left( * \right) \le  - 1\).

Vậy hệ đã cho có nghiệm \(\left( {x;y} \right) \in \left\{ {\left( { - 2;0} \right),\left( { - 2; - 2\sqrt 2 } \right),\left( { - 2;2\sqrt 2 } \right),\left( {1;0} \right)} \right\}\).