Giải mục III trang 96, 97 SGK Toán 10 tập 1 - Cánh diều

Đề bài

Luyện tập – vận dụng 4 trang 96 SGK Toán 10 – Cánh Diều

Sử dụng tích vô hướng, chứng minh định lí Pythagore: Tam giác ABC vuông tại A khi và chỉ khi \(B{C^2} = A{B^2} + A{C^2}\).


Phương pháp giải - Xem chi tiết

Định lí cosin trong tam giác ABC: \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

Góc \(\widehat A = {90^o}\) thì \(\cos A = \cos {90^o} = 0\)

Lời giải chi tiết

Áp dụng định lí cosin trong tam giác ABC, ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

Ta có: \(\widehat A = {90^o}\) (tam giác ABC vuông tại A) \( \Leftrightarrow \cos A = \cos {90^o} = 0\)

\( \Leftrightarrow B{C^2} = A{B^2} + A{C^2}\) (đpcm)