Giải bài 3 trang 48 SGK Toán 10 tập 1 – Cánh diều

  •   

Đề bài

Xét dấu của mỗi tam thức bậc hai sau:

a) f(x)=3x24x+1

b) f(x)=9x2+6x+1

c) f(x)=2x23x+10

d) f(x)=5x2+2x+3

e) f(x)=4x2+8x4

g) f(x)=3x2+3x1

Phương pháp giải - Xem chi tiết

Sử dụng biệt thức thu gọn Δ=(b)2ac với b=2b.

+ Nếu Δ<0 thì f(x) cùng dấu với hệ số a vời mọi xR.

+ Nếu Δ=0 thì f(x) cùng dấu với hệ số a vời mọi xR{ba}.

+ Nếu Δ>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (;x1)(x2;+);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải chi tiết

a) Ta có a=3>0,b=4,c=1

Δ=(2)23.1=1>0

f(x) có 2 nghiệm x=13,x=1. Khi đó:

f(x)>0 với mọi x thuộc các khoảng (;13)(1;+);

f(x)<0 với mọi x thuộc các khoảng (13;1)

b) Ta có a=9>0,b=6,c=1

Δ=0

f(x) có 1 nghiệm x=13. Khi đó:

f(x)>0 với mọi xR{13}

c) Ta có a=2>0,b=3,c=10

Δ=(3)24.2.10=71<0

f(x)>0xR

d) Ta có a=5<0,b=2,c=3

Δ=12(5).3=16>0

f(x) có 2 nghiệm x=35,x=1. Khi đó:

f(x)<0 với mọi x thuộc các khoảng (;35)(1;+);

f(x)>0 với mọi x thuộc các khoảng (35;1)

e) Ta có a=4<0,b=8c=4

Δ=0

f(x) có 1 nghiệm x=2. Khi đó:

f(x)<0 với mọi xR{2}

g) Ta có a=3<0,b=3,c=1

Δ=324.(3).(1)=3<0

f(x)<0xR