Hoạt động 1
Trong bài toán ở phần mở đầu, ta gọi x, y lần lượt là số bánh nướng và số bánh dẻo doanh nghiệp dự định sản xuất (x, y là số tự nhiên). Nếu điều kiện ràng buộc đối với 1 và y để lượng đường sản xuất bánh không vượt quá lượng đường đã nhập về.
Phương pháp giải:
- Đổi 60g và 50g ra kg.
- Lượng đường không vượt quá 500kg
Lời giải chi tiết:
Đổi 60g=0,06kg, 50g=0,05kg
Lượng đường cần cho x chiếc bánh nướng là 0,06x kg
Lượng đường cần cho y chiếc bánh dẻo là 0,05y kg
Vì lượng đường đã nhập về là 500kg và lượng đường sản xuất bánh không vượt quá lượng đường đã nhập về nên ta có:
\(0,06x + 0,05y \le 500\)
Luyện tập – Vận dụng 1
Tìm bất phương trình bậc nhất hai ẩn trong các bất phương trình sau và chỉ ra một nghiệm của bất phương trình bậc nhất hai ẩn đó:
a) \(5x + 3y < 20\)
b) \(3x - \frac{5}{y} > 2\)
Phương pháp giải:
- Nhận dạng bất phương trình
- Bất phương trình có ẩn ở mẫu không là bất phương trình bậc nhất hai ẩn
Lời giải chi tiết:
a) \(5x + 3y < 20\)
Đây là bất phương trình bậc nhất hai ẩn.
Chọn \(x = 0;y = 0\)
Khi đó bất phương trình tương đương với 5.0+3.0
Vậy (0;0) là một nghiệm của bất phương trình trên.
b) \(3x - \frac{5}{y} > 2\)
Đây không là bất phương trình bậc nhất hai ẩn vì có ẩn y ở mẫu.