Đề bài
Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định \(a,b,c\) lần lượt là hệ số của \({x^2}\), hệ số của \(x\) và hệ số tự do.
a) \(y = - 3{x^2}\)
b) \(y = 2x\left( {{x^2} - 6x + 1} \right)\)
c) \(y = 4x\left( {2x - 5} \right)\)
Phương pháp giải - Xem chi tiết
- Xác định hàm số bậc hai (số mũ cao nhất là 2)
- Tìm hệ số a, b, c.
Lời giải chi tiết
a) Hàm số \(y = - 3{x^2}\) là hàm số bậc hai.
\(y = - 3.{x^2} + 0.x + 0\)
Hệ số \(a = - 3,b = 0,c = 0\).
b) Hàm số \(y = 2x\left( {{x^2} - 6x + 1} \right)\)\( \Leftrightarrow y = 2{x^3} - 12{x^2} + 2x\) có số mũ cao nhất là 3 nên không là hàm số bậc hai.
c) Hàm số \(y = 4x\left( {2x - 5} \right)\)\( \Leftrightarrow y = 8{x^2} - 20x\) có số mũ cao nhất là 2 nên là hàm số bậc hai.
Hệ số \(a = 8,b = - 20,c = 0\)