Tìm số nguyên \(m\) sao cho hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) mà $x,y$ đều là số nguyên.
Từ phương trình (2) ta có \(y = 3m - 1 - mx\). Thay vào phương trình (1) ta được:\(x + m\left( {3m - 1 - mx} \right) = m + 1 \Leftrightarrow \left( {{m^2} - 1} \right)x = 3{m^2} - 2m - 1\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi phương trình (3) có nghiệm duy nhất, tức là \({m^2} - 1 \ne 0 \Leftrightarrow m \ne \pm 1\).
Khi đó: \(\left\{ \begin{array}{l}x = \dfrac{{3{m^2} - 2m - 1}}{{{m^2} - 1}} = \dfrac{{\left( {m - 1} \right)\left( {3m + 1} \right)}}{{\left( {m - 1} \right).\left( {m + 1} \right)}} = \dfrac{{3m + 1}}{{m + 1}}\\y = 3m - 1 - m.\dfrac{{3m + 1}}{{m + 1}} = \dfrac{{m - 1}}{{m + 1}}\end{array} \right.\)
Hay \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\)
Vậy \(x,y\) nguyên khi và chỉ khi \(\dfrac{2}{{m + 1}}\) nguyên. Do đó \(m + 1\) chỉ có thể là \( - 2; - 1;1;2\). Vậy \(m \in \left\{ { - 3; - 2;0} \right\}\) (thỏa mãn) hoặc \(m = 1\) (loại).
Cho đường thẳng \(\left( {{d_1}} \right):y = x + 2\) và đường thẳng \(\left( {{d_2}} \right):y = \left( {2{m^2} - m} \right)x + {m^2} + m\).
Tìm \(m\) để \(({d_1})//({d_2})\).
Đường thẳng \(({d_1})//({d_2})\) khi và chỉ khi \(\left\{ \begin{array}{l}2{m^2} - m = 1\\{m^2} + m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {2m + 1} \right) = 0\\\left( {m - 1} \right)\left( {m + 2} \right) \ne 0\end{array} \right. \Leftrightarrow m = - \dfrac{1}{2}\).
Vậy với \(m = - \dfrac{1}{2}\) thì \(({d_1})//({d_2})\).
Cho đường thẳng \(\left( {{d_1}} \right):y = x + 2\) và đường thẳng \(\left( {{d_2}} \right):y = \left( {2{m^2} - m} \right)x + {m^2} + m\).
Gọi \(A\) là điểm thuộc đường thẳng \(({d_1})\) có hoành độ \(x = 2\). Viết phương trình đường thẳng \(({d_3})\) đi qua \(A\) vuông góc với \(({d_1})\).
Vì \(A\) là điểm thuộc đường thẳng \(({d_1})\) có hoành độ \(x = 2\) suy ra tung độ điểm \(A\) là \(y = 2 + 2 = 4 \Rightarrow A\left( {2;4} \right)\) .
Đường thẳng \(\left( {{d_1}} \right)\) có hệ số góc là \(a = 1\), đường thẳng \(\left( {{d_2}} \right)\) có hệ số góc là \(a' \Rightarrow a'.1 = - 1 \Rightarrow a' = - 1\) . Đường thẳng \(\left( {{d_3}} \right)\) có dạng \(y = - x + b\). Vì \(\left( {{d_3}} \right)\) đi qua \(A\left( {2;4} \right)\) suy ra \(4 = - 2 + b \Rightarrow b = 6\). Vậy đường thẳng \(\left( {{d_3}} \right)\) là \(y = - x + 6\).
Cho đường thẳng \(\left( {{d_1}} \right):y = x + 2\) và đường thẳng \(\left( {{d_2}} \right):y = \left( {2{m^2} - m} \right)x + {m^2} + m\).
Khi \(({d_1})//({d_2})\). Hãy tính khoảng cách giữa hai đường thẳng \(({d_1}),\left( {{d_2}} \right)\).
Đường thẳng \(({d_1})//({d_2})\) khi và chỉ khi \(\left\{ \begin{array}{l}2{m^2} - m = 1\\{m^2} + m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {2m + 1} \right) = 0\\\left( {m - 1} \right)\left( {m + 2} \right) \ne 0\end{array} \right. \Leftrightarrow m = - \dfrac{1}{2}\).
Vậy với \(m = - \dfrac{1}{2}\) thì \(({d_1})//({d_2})\). Khi đó \(\left( {{d_2}} \right):y = x -\dfrac{1}{4}\)
Lại có theo câu trước đường thẳng \(\left( {{d_3}} \right)\) là \(y = - x + 6\).
Khi \(({d_1})//({d_2})\) thì khoảng cách giữa hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) cũng chính là khoảng cách giữa hai điểm \(A,B\) lần lượt thuộc \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) sao cho \(AB \bot ({d_1}),AB \bot \left( {{d_2}} \right)\).
Hình vẽ: Gọi \(B\) là giao điểm của đường thẳng \(({d_3})\) và \(({d_2})\). Phương trình hoành độ giao điểm
của \(\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right)\) là:
\( - x + 6 = x - \dfrac{1}{4} \Leftrightarrow x = \dfrac{{25}}{8} \Rightarrow y = \dfrac{{23}}{8} \Rightarrow B\left( {\dfrac{{25}}{8};\dfrac{{23}}{8}} \right)\).
Vậy độ dài đoạn thẳng \(AB\) là: \(AB = \sqrt {{{\left( {\dfrac{{25}}{8} - 2} \right)}^2} + {{\left( {\dfrac{{23}}{8} - 4} \right)}^2}} = \dfrac{{9\sqrt 2 }}{8}\).
Cho đường thẳng \(\left( {{d_1}} \right):y = x + 2\) và đường thẳng \(\left( {{d_2}} \right):y = \left( {2{m^2} - m} \right)x + {m^2} + m\).
Tính diện tích tam giác \(OMN\) với \(M,N\) lần lượt là giao điểm của \(({d_1})\) với các trục tọa độ \(Ox,Oy\).
Gọi \(M,N\) lần lượt là giao điểm của đường thẳng \(\left( {{d_1}} \right)\) với các trục tọa độ \(Ox,Oy\). Ta có:
Cho \(y = 0 \Rightarrow x = - 2 \Rightarrow M\left( { - 2;0} \right)\),
cho \(x = 0 \Rightarrow y = 2 \Rightarrow N\left( { 0;2} \right)\).
Từ đó suy ra \(OM = ON = 2\).
Tam giác $OMN$ vuông cân tại \(O\) nên \({S_{OMN}} = \dfrac{1}{2}OM.ON = 2\) (đvdt).
Cho đường thẳng \(mx + \left( {2 - 3m} \right)y + m - 1 = 0\) \((d)\).
Tìm điểm cố định \(I\) mà đường thẳng \((d)\) luôn đi qua.
Gọi \(I\left( {{x_0};{y_0}} \right)\) là điểm cố định mà đường thẳng \((d)\) luôn đi qua với mọi \(m\) khi đó
ta có: \(m{x_0} + \left( {2 - 3m} \right){y_0} + m - 1 = 0\,\forall m\)\( \Leftrightarrow m\left( {{x_0} - 3{y_0} + 1} \right) + 2{y_0} - 1 = 0\,\forall m\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right.\). Hay\(\left\{ \begin{array}{l}{x_0} = \dfrac{1}{2}\\{y_0} = \dfrac{1}{2}\end{array} \right. \Leftrightarrow I\left( {\dfrac{1}{2};\dfrac{1}{2}} \right)\).
Cho đường thẳng \(mx + \left( {2 - 3m} \right)y + m - 1 = 0\) \((d)\).
Tìm \(m\) để khoảng cách từ gốc tọa độ đến đường thẳng \((d)\) là lớn nhất.
Gọi \(H\) là hình chiếu vuông góc của \(O\) lên đường thẳng \((d)\). Ta có: \(OH \le OI\) suy ra \(OH\) lớn nhất bằng \(OI\) khi và chỉ khi \(H \equiv I \Leftrightarrow OI \bot (d)\). Đường thẳng qua \(O\) có phương trình: \(y = ax\) do \(I\left( {\dfrac{1}{2};\dfrac{1}{2}} \right) \in OI \Rightarrow \dfrac{1}{2} = a.\dfrac{1}{2} \Leftrightarrow a = 1 \Rightarrow OI:y = x\).
Đường thẳng \((d)\) được viết lại như sau: \(mx + \left( {2 - 3m} \right)y + m - 1 = 0 \Leftrightarrow \left( {2 - 3m} \right)y = - mx + 1 - m\).
+ Nếu \(m = \dfrac{2}{3}\) thì đường thẳng \((d):x - \dfrac{1}{2} = 0\) song song với trục \(Oy\) nên khoảng cách từ \(O\) đến \((d)\) là \(\dfrac{1}{2}\).
+ Nếu \(m \ne \dfrac{2}{3}\) đường thẳng \((d)\) có thể viết lại: \(y = \dfrac{m}{{3m - 2}}x + \dfrac{{m - 1}}{{3m - 2}}\).
Điều kiện để \((d) \bot OI\) là \(\dfrac{m}{{3m - 2}}.1 = - 1 \Leftrightarrow m = 2 - 3m \Leftrightarrow m = \dfrac{1}{2}\).
Khi đó khoảng cách \(OI = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{2}} \right)}^2}} = \dfrac{{\sqrt 2 }}{2}\).
Nhận thấy $\dfrac{{\sqrt 2 }}{2}>\dfrac{{1}}{2}$ nên khoảng cách lớn nhất cần tìm là $\dfrac{{\sqrt 2 }}{2}$ khi \(m = \dfrac{1}{2}\).
Vậy \(m = \dfrac{1}{2}\) là giá trị cần tìm.
Xác định các hệ số \(a,b\) của hàm số \(y = ax + b\) để:
Đồ thị của nó đi qua hai điểm \(A\left( {1;3} \right),B\left( {2;4} \right)\)
Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng ta được:
$\left\{ \begin{array}{l}3 = a + b\,\,\left( 1 \right)\\4 = 2a + b\,\,\left( 2 \right)\end{array} \right.$.
Từ \(\left( 1 \right)\) ta có \(b = 3 - a\) . Thay \(b = 3 - a\) vào \(\left( 2 \right)\) ta được \(4 = 2a + 3 - a \Leftrightarrow a = 1 \Rightarrow b = 2\) .
Vậy \(a = 1,b = 2\).
Xác định các hệ số \(a,b\) của hàm số \(y = ax + b\) để:
Đồ thị của nó cắt trục tung tại điểm có tung độ bằng \( - 4\) và cắt trục hoành tại điểm có hoành độ bằng \(2\).
Vì đồ thị cắt trục tung tại điểm có tung độ bằng \( - 4\) nên điểm \(A\left( {0; - 4} \right)\) thuộc đồ thị hàm số, đồ thị cắt trục hoành tại điểm có hoành độ \(2\) nên điểm \(B\left( {2;0} \right)\) thuộc đồ thị hàm số.
Thay tọa độ điểm \(A\left( {0; - 4} \right)\) vào hàm số \(y = ax + b\) ta được \( - 4 = 0.a + b \Leftrightarrow b = - 4\) \( \Rightarrow y = a.x - 4\)
Thay tọa độ điểm \(B\left( {2;0} \right)\) vào hàm số \(y = a.x - 4\) ta được \(0 = a.2 - 4 \Leftrightarrow 2a = 4 \Leftrightarrow a = 2.\)
Vậy \(a = 2;b = - 4.\)
Cho $2$ đường thẳng $d:y = x + 3;d':y = \dfrac{{ - 2}}{3}x + \dfrac{4}{3}$. Gọi $M$ là giao điểm của $d$ và $d'$ . $A$ và $C$ lần lượt là giao điểm của $d$ và $d'$ với trục hoành; $B$ và $D$ lần lượt là giao điểm của $d$ và $d'$ với trục tung. Khi đó diện tích tam giác $CMB$ là:
Xét phương trình hoành độ giao điểm:
$x + 3 = - \dfrac{2}{3}x + \dfrac{4}{3} \Leftrightarrow 3x + 9 = - 2x + 4 \Leftrightarrow 5x = - 5 \Leftrightarrow x = - 1 \Rightarrow y = 2$
Do đó giao điểm của $2$ đường thẳng đã cho là $M\left( { - 1;2} \right)$
$\begin{array}{l}d \cap Ox = A( - 3;0) \Rightarrow OA = 3\\d' \cap Ox = C(2;0) \Rightarrow OC = 2\\d \cap Oy = B(0;3) \Rightarrow OB = 3\\d' \cap Oy = D\left( {0;\dfrac{4}{3}} \right)\\ \Rightarrow AC = OA + OC = 3 + 2 = 5\\{S_{\Delta ABC}} = \dfrac{1}{2}AC.OB = \dfrac{1}{2}.5.3 = \dfrac{{15}}{2}(dvdt)\end{array}$
Gọi $H$ là hình chiếu của $M$ trên $Ox$
$\begin{array}{l} \Rightarrow MH = |{y_M}| = 2\\{S_{\Delta AMC}} = \dfrac{1}{2}MH.AC = \dfrac{1}{2}.2.5 = 5(dvdt)\\{S_{\Delta BMC}} = {S_{\Delta ABC}} - {S_{\Delta AMC}} = \dfrac{{15}}{2} - 5 = \dfrac{5}{2}(dvdt)\end{array}$
Tìm $m$ để đường thẳng $d:y = mx + 1$ cắt đường thẳng $d':y = 2x - 1$ tại $1$ điểm thuộc đường phân giác góc phần tư thứ $II$ và thứ $IV$.
Ta có: $d \cap d' \Leftrightarrow m \ne 2$
Xét phương trình hoành độ giao điểm của $d$ và $d'$:
$\begin{array}{l}mx + 1 = 2x - 1 \Leftrightarrow (m - 2)x = - 2\\ \Rightarrow x = \dfrac{{ - 2}}{{m - 2}} \Rightarrow y = 2.\dfrac{{ - 2}}{{m - 2}} - 1 = \dfrac{{ - m - 2}}{{m - 2}}.\end{array}$
Phương trình đường phân giác góc phần tư thứ $2$ là $y = - x$
Vì $d$ và $d'$ cắt nhau tại $1$ điểm điểm thuộc đường phân giác góc phần tư thứ $II$ và thứ $IV$ nên ta có:
$\dfrac{{ - m - 2}}{{m - 2}} = - \dfrac{{ - 2}}{{m - 2}} \Leftrightarrow - m - 2 = 2 \Leftrightarrow m = - 4$ (t/m)
Vậy $m = - 4$.
Có bao nhiêu giá trị nguyên của $m$ để $2$ đường thẳng $d:y = mx - 2;d':y = 2x + 1$ cắt nhau tại điểm có hoành độ là số nguyên.
Ta có: $d \cap d' \Leftrightarrow m \ne 2$.
Xét phương trình hoành độ giao điểm của $d$ và $d'$ : $mx - 2 = 2x + 1 \Leftrightarrow (m - 2)x = 3 \Leftrightarrow x = \dfrac{3}{{m - 2}}$
Ta có $x = \dfrac{3}{{m - 2}} \in Z \Leftrightarrow m - 2 \in U(3) = \left\{ { \pm 1; \pm 3} \right\}$
Ta có bảng sau:
Vậy $m \in \left\{ { - 1;1;3;5} \right\}$.
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:
Giả sử $MN:y = {\rm{ax}} + b$
Ta có $N$ thuộc $MN \Rightarrow 0 = a.1 + b \Rightarrow a = - b$;
$M$ thuộc $MN \Rightarrow 2 = a.0 + b \Rightarrow b = 2 \Rightarrow a = - 2$
Do đó $MN:y = - 2{\rm{x}} + 2$.
Vì $M,N$ lần lượt là rung điểm của các cạnh $BC,CA$ của tam giác $ABC$ nên $MN$ là đường trung bình của tam giác $ABC \Rightarrow MN//AB$
Suy ra $AB$ có dạng: $y = - 2x + b'(b' \ne 2)$
Vì $P$ là trung điểm của $AB$ nên $AB$ đi qua $P\left( { - 1; - 1} \right)$
$ \Rightarrow - 1 = - 2( - 1) + b' \Leftrightarrow b' = - 3(t/m)$
Vậy $AB:y = - 2x - 3.$
Cho đường thẳng $d:y = ({m^2} - 2m + 2)x + 4$. Tìm $m$ để $d$ cắt $Ox$ tại $A$ và cắt $Oy$ tại $B$ sao cho diện tích tam giác $AOB$ lớn nhất.
$\begin{array}{l}d \cap Oy = \left\{ B \right\}\\x = 0 \Rightarrow y = 4 \Rightarrow B(0;4) \Rightarrow OB = |4| = 4\\d \cap {\rm{Ox}} = \left\{ A \right\}\\y = 0 \Leftrightarrow ({m^2} - 2m + 2)x + 4 = 0 \Leftrightarrow x = \dfrac{{ - 4}}{{{m^2} - 2m + 2}}\\ \Rightarrow A\left( {\dfrac{{ - 4}}{{{m^2} - 2m + 2}};0} \right) \Rightarrow OA = \left| {\dfrac{{ - 4}}{{{m^2} - 2m + 2}}} \right|\end{array}$
\( \Rightarrow OA = \dfrac{4}{{{m^2} - 2m + 2}}\)
(vì ${m^2} - 2m + 2 = {(m - 1)^2} + 1 \ge 1\begin{array}{*{20}{c}}{}&{\forall m}\end{array}$)
${S_{\Delta AOB}} = \dfrac{1}{2}OA.OB = \dfrac{1}{2}.4.\dfrac{4}{{{m^2} - 2m + 2}} = \dfrac{8}{{{{(m - 1)}^2} + 1}}$
Hay ${S_{\Delta AOB}} = \dfrac{8}{{{{(m - 1)}^2} + 1}} \le \dfrac{8}{1} = 8$
Dấu “=” xảy ra khi $m - 1 = 0 \Leftrightarrow m = 1$.
Cho tam giác $ABC$ có đường thẳng $BC:y = - \dfrac{1}{3}x + 1$ và $A\left( {1,2} \right)$ . Viết phương trình đường cao $AH$ của tam giác $ABC$ .
Giả sử $AH:y = {\rm{ax}} + b$
Vì $AH$ là đường cao của tam giác $ABC$ nên $AH$ vuông góc với $BC$ nên: $a.\dfrac{{ - 1}}{3} = - 1 \Leftrightarrow a = 3$
Mặt khác $AH$ đi qua $A\left( {1;2} \right)$ nên ta có: $3.1 + b = 2 \Leftrightarrow b = - 1$
Vậy $AH:y = 3x - 1$.
Điểm cố định mà đường thẳng $d:y = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}x + \sqrt k + 3 \, (k \ge 0)$ luôn đi qua là:
Gọi $M\left( {{x_0};{y_0}} \right)$ là điểm cố định mà $d$ luôn đi qua.
$\begin{array}{l} \Leftrightarrow M\left( {{x_0};{y_0}} \right) \in d\begin{array}{*{20}{c}}{}&{}\end{array}\forall k\\ \Leftrightarrow {y_0} = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}{x_0} + \sqrt k + \sqrt 3 \begin{array}{*{20}{c}}{}&{}\end{array}\forall k\\ \Leftrightarrow \sqrt k {x_0} + {x_0} + \sqrt {3k} - \sqrt k - \sqrt 3 + 3 - \sqrt 3 {y_0} + {y_0} = 0\begin{array}{*{20}{c}}{}&{}\end{array}\forall k\\ \Leftrightarrow \sqrt k ({x_0} + \sqrt 3 - 1) + {x_0} + 3 - \sqrt 3 + (1 - \sqrt 3 ){y_0} = 0\begin{array}{*{20}{c}}{}&{}\end{array}\forall k\\ \Leftrightarrow \left\{ \begin{array}{l}{x_0} + \sqrt 3 - 1 = 0\\{x_0} + (1 - \sqrt 3 ){y_0} + 3 - \sqrt 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 1 - \sqrt 3 \\(1 - \sqrt 3 ) + (1 - \sqrt 3 ){y_0} + 3 - \sqrt 3 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 1 - \sqrt 3 \\(1 - \sqrt 3 ){y_0} + 4 - 2\sqrt 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 1 - \sqrt 3 \\(1 - \sqrt 3 ){y_0} + {(1 - \sqrt 3 )^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 1 - \sqrt 3 \\{y_0} = - 1 + \sqrt 3 \end{array} \right.\end{array}$
$ \Rightarrow M\left( {1 - \sqrt 3 ;\sqrt 3 - 1} \right)$là điểm cố định mà d luôn đi qua.
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:
Giả sử $MN:y = {\rm{ax}} + b$
Ta có $N$ thuộc $MN \Rightarrow 0 = a.1 + b \Rightarrow a = - b$;
$M$ thuộc $MN \Rightarrow 2 = a.0 + b \Rightarrow b = 2 \Rightarrow a = - 2$
Do đó $MN:y = - 2{\rm{x}} + 2$.
Vì $M,N$ lần lượt là rung điểm của các cạnh $BC,CA$ của tam giác $ABC$ nên $MN$ là đường trung bình của tam giác $ABC \Rightarrow MN//AB$
Suy ra $AB$ có dạng: $y = - 2x + b'(b' \ne 2)$
Vì $P$ là trung điểm của $AB$ nên $AB$ đi qua $P\left( { - 1; - 1} \right)$
$ \Rightarrow - 1 = - 2( - 1) + b' \Leftrightarrow b' = - 3(t/m)$
Vậy $AB:y = - 2x - 3.$
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( {1;1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Viết phương trình đường trung trực của đoạn thẳng $AB$.
Gọi phương trình đường trung trực của $AB$ là $d:y = mx + n$ và $MN:y = ax + b$
Ta có $N$ thuộc $MN \Rightarrow 0 = a.1 + b \Rightarrow a = - b$;
$M$ thuộc $MN \Rightarrow 2 = a.0 + b \Rightarrow b = 2 \Rightarrow a = - 2$
Do đó $MN:y = - 2{\rm{x}} + 2$.
Vì $M,N$ lần lượt là trung điểm của các cạnh $BC,CA$ của tam giác $ABC$ nên $MN$ là đường trung bình của tam giác $ABC \Rightarrow MN//AB$.
Vì $d$ là đường trung trực của $AB$ nên $d \bot MN \Rightarrow m( - 2) = - 1 \Leftrightarrow m = \dfrac{1}{2}$
$ \Rightarrow d:y = \dfrac{1}{2}x + n$
Vì $P$ là trung điểm của $AB$ nên \(d\) đi qua $P$
$ \Rightarrow 1 = \dfrac{1}{2}.1 + n \Leftrightarrow n = \dfrac{1}{2}$.
Vậy trung trực của $AB$ là : $y = \dfrac{1}{2}x + \dfrac{1}{2}$.
Cho hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 5\\mx - y = 4\end{array} \right.\)\(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) trong đó \(x,y\) trái dấu.
Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\). Ta có: \(x.y = \dfrac{{3\left( {4 - 5m} \right)}}{{{{\left( {2m - 1} \right)}^2}}}\). Do đó \(x.y < 0 \Leftrightarrow 4 - 5m < 0 \Leftrightarrow m > \dfrac{4}{5}\) (thỏa mãn điều kiện)
Cho hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 5\\mx - y = 4\end{array} \right.\)\(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\) thỏa mãn \(x = \left| y \right|\).
Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\).
Ta có: \(x = \left| y \right| \Leftrightarrow \dfrac{3}{{2m - 1}} = \left| {\dfrac{{4 - 5m}}{{2m - 1}}} \right|\) (4)
Từ (4) suy ra \(2m - 1 > 0 \Leftrightarrow m > \dfrac{1}{2}\). Với điều kiện \(m > \dfrac{1}{2}\) ta có:
\(\left( 4 \right) \Leftrightarrow \left| {4 - 5m} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}4 - 5m = 3\\4 - 5m = - 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{1}{5}\left( l \right)\\m = \dfrac{7}{5}\end{array} \right.\).
Vậy \(m = \dfrac{7}{5}\).