Câu hỏi:
2 năm trước

Cho hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 5\\mx - y = 4\end{array} \right.\)\(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)

Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) trong đó \(x,y\) trái dấu.

Trả lời bởi giáo viên

Đáp án đúng: a

Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\)   (3)

Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\). Ta có: \(x.y = \dfrac{{3\left( {4 - 5m} \right)}}{{{{\left( {2m - 1} \right)}^2}}}\). Do đó \(x.y < 0 \Leftrightarrow 4 - 5m < 0 \Leftrightarrow m > \dfrac{4}{5}\) (thỏa mãn điều kiện)

Hướng dẫn giải:

+ Từ phương trình (1) biểu diễn \(x\) theo \(y.\)

+ Thế vào phương trình \(\left( 2 \right)\) để được phương trình bậc nhất ẩn \(y.\)

+ Sử dụng kiến thức \(A.X + B = 0\) có nghiệm duy nhất khi \(A \ne 0.\)

+ Biến đổi theo yêu cầu \(xy < 0\) để tìm ra điều kiện của \(m.\)

Câu hỏi khác