Tìm điểm cố định \(I\) mà đường thẳng \((d)\) luôn đi qua.
Gọi \(I\left( {{x_0};{y_0}} \right)\) là điểm cố định mà đường thẳng \((d)\) luôn đi qua với mọi \(m\) khi đó
ta có: \(m{x_0} + \left( {2 - 3m} \right){y_0} + m - 1 = 0\) với mọi \(m\)
\( \Leftrightarrow m\left( {{x_0} - 3{y_0} + 1} \right) + 2{y_0} - 1 = 0\) với mọi \(m\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right.\).
Hay\(\left\{ \begin{array}{l}{x_0} = \dfrac{1}{2}\\{y_0} = \dfrac{1}{2}\end{array} \right. \Leftrightarrow I\left( {\dfrac{1}{2};\dfrac{1}{2}} \right)\).
Khi \(({d_1})//({d_2})\). Hãy tính khoảng cách giữa hai đường thẳng \(({d_1}),\left( {{d_2}} \right)\).
Đường thẳng \(({d_1})//({d_2})\) khi và chỉ khi \(\left\{ \begin{array}{l}2{m^2} - m = 1\\{m^2} + m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {2m + 1} \right) = 0\\\left( {m - 1} \right)\left( {m + 2} \right) \ne 0\end{array} \right. \Leftrightarrow m = - \dfrac{1}{2}\).
Vậy với \(m = - \dfrac{1}{2}\) thì \(({d_1})//({d_2})\). Khi đó \(\left( {{d_2}} \right):y = x -\dfrac{1}{4}\)
Lại có theo câu trước đường thẳng \(\left( {{d_3}} \right)\) là \(y = - x + 6\).
Khi \(({d_1})//({d_2})\) thì khoảng cách giữa hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) cũng chính là khoảng cách giữa hai điểm \(A,B\) lần lượt thuộc \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) sao cho \(AB \bot ({d_1}),AB \bot \left( {{d_2}} \right)\).
Hình vẽ: Gọi \(B\) là giao điểm của đường thẳng \(({d_3})\) và \(({d_2})\). Phương trình hoành độ giao điểm
của \(\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right)\) là:
\( - x + 6 = x - \dfrac{1}{4} \Leftrightarrow x = \dfrac{{25}}{8} \Rightarrow y = \dfrac{{23}}{8} \Rightarrow B\left( {\dfrac{{25}}{8};\dfrac{{23}}{8}} \right)\).
Vậy độ dài đoạn thẳng \(AB\) là: \(AB = \sqrt {{{\left( {\dfrac{{25}}{8} - 2} \right)}^2} + {{\left( {\dfrac{{23}}{8} - 4} \right)}^2}} = \dfrac{{9\sqrt 2 }}{8}\).
Gọi \(A\) là điểm thuộc đường thẳng \(({d_1})\) có hoành độ \(x = 2\). Viết phương trình đường thẳng \(({d_3})\) đi qua \(A\) vuông góc với \(({d_1})\).
Vì \(A\) là điểm thuộc đường thẳng \(({d_1})\) có hoành độ \(x = 2\) suy ra tung độ điểm \(A\) là \(y = 2 + 2 = 4 \Rightarrow A\left( {2;4} \right)\) .
Đường thẳng \(\left( {{d_1}} \right)\) có hệ số góc là \(a = 1\), đường thẳng \(\left( {{d_2}} \right)\) có hệ số góc là \(a' \Rightarrow a'.1 = - 1 \Rightarrow a' = - 1\) . Đường thẳng \(\left( {{d_3}} \right)\) có dạng \(y = - x + b\). Vì \(\left( {{d_3}} \right)\) đi qua \(A\left( {2;4} \right)\) suy ra \(4 = - 2 + b \Rightarrow b = 6\). Vậy đường thẳng \(\left( {{d_3}} \right)\) là \(y = - x + 6\).
Tìm \(m\) để \(({d_1})//({d_2})\).
Đường thẳng \(({d_1})//({d_2})\) khi và chỉ khi \(\left\{ \begin{array}{l}2{m^2} - m = 1\\{m^2} + m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {2m + 1} \right) = 0\\\left( {m - 1} \right)\left( {m + 2} \right) \ne 0\end{array} \right. \Leftrightarrow m = - \dfrac{1}{2}\).
Vậy với \(m = - \dfrac{1}{2}\) thì \(({d_1})//({d_2})\).
Tìm \(m\) để \(({d_1})//({d_2})\).
Đường thẳng \(({d_1})//({d_2})\) khi và chỉ khi \(\left\{ \begin{array}{l}2{m^2} - m = 1\\{m^2} + m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {2m + 1} \right) = 0\\\left( {m - 1} \right)\left( {m + 2} \right) \ne 0\end{array} \right. \Leftrightarrow m = - \dfrac{1}{2}\).
Vậy với \(m = - \dfrac{1}{2}\) thì \(({d_1})//({d_2})\).
Tìm \(m\) để khoảng cách từ gốc tọa độ đến đường thẳng \((d)\) là lớn nhất.
Gọi \(H\) là hình chiếu vuông góc của \(O\) lên đường thẳng \((d)\). Ta có: \(OH \le OI\) suy ra \(OH\) lớn nhất bằng \(OI\) khi và chỉ khi \(H \equiv I \Leftrightarrow OI \bot (d)\). Đường thẳng qua \(O\) có phương trình: \(y = ax\) do \(I\left( {\dfrac{1}{2};\dfrac{1}{2}} \right) \in OI \Rightarrow \dfrac{1}{2} = a.\dfrac{1}{2} \Leftrightarrow a = 1 \Rightarrow OI:y = x\).
Đường thẳng \((d)\) được viết lại như sau: \(mx + \left( {2 - 3m} \right)y + m - 1 = 0 \Leftrightarrow \left( {2 - 3m} \right)y = - mx + 1 - m\).
+ Nếu \(m = \dfrac{2}{3}\) thì đường thẳng \((d):x - \dfrac{1}{2} = 0\) song song với trục \(Oy\) nên khoảng cách từ \(O\) đến \((d)\) là \(\dfrac{1}{2}\).
+ Nếu \(m \ne \dfrac{2}{3}\) đường thẳng \((d)\) có thể viết lại: \(y = \dfrac{m}{{3m - 2}}x + \dfrac{{m - 1}}{{3m - 2}}\).
Điều kiện để \((d) \bot OI\) là \(\dfrac{m}{{3m - 2}}.1 = - 1 \Leftrightarrow m = 2 - 3m \Leftrightarrow m = \dfrac{1}{2}\).
Khi đó khoảng cách \(OI = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{2}} \right)}^2}} = \dfrac{{\sqrt 2 }}{2}\).
Nhận thấy $\dfrac{{\sqrt 2 }}{2}>\dfrac{{1}}{2}$ nên khoảng cách lớn nhất cần tìm là $\dfrac{{\sqrt 2 }}{2}$ khi \(m = \dfrac{1}{2}\).
Vậy \(m = \dfrac{1}{2}\) là giá trị cần tìm.
Tìm điểm cố định \(I\) mà đường thẳng \((d)\) luôn đi qua.
Gọi \(I\left( {{x_0};{y_0}} \right)\) là điểm cố định mà đường thẳng \((d)\) luôn đi qua với mọi \(m\) khi đó
ta có: \(m{x_0} + \left( {2 - 3m} \right){y_0} + m - 1 = 0\,\forall m\)\( \Leftrightarrow m\left( {{x_0} - 3{y_0} + 1} \right) + 2{y_0} - 1 = 0\,\forall m\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right.\). Hay\(\left\{ \begin{array}{l}{x_0} = \dfrac{1}{2}\\{y_0} = \dfrac{1}{2}\end{array} \right. \Leftrightarrow I\left( {\dfrac{1}{2};\dfrac{1}{2}} \right)\).
Tìm điểm cố định \(I\) mà đường thẳng \((d)\) luôn đi qua.
Gọi \(I\left( {{x_0};{y_0}} \right)\) là điểm cố định mà đường thẳng \((d)\) luôn đi qua với mọi \(m\) khi đó
ta có: \(m{x_0} + \left( {2 - 3m} \right){y_0} + m - 1 = 0\,\forall m\)\( \Leftrightarrow m\left( {{x_0} - 3{y_0} + 1} \right) + 2{y_0} - 1 = 0\,\forall m\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right.\). Hay\(\left\{ \begin{array}{l}{x_0} = \dfrac{1}{2}\\{y_0} = \dfrac{1}{2}\end{array} \right. \Leftrightarrow I\left( {\dfrac{1}{2};\dfrac{1}{2}} \right)\).
Đồ thị của nó cắt trục tung tại điểm có tung độ bằng \( - 4\) và cắt trục hoành tại điểm có hoành độ bằng \(2\).
Vì đồ thị cắt trục tung tại điểm có tung độ bằng \( - 4\) nên điểm \(A\left( {0; - 4} \right)\) thuộc đồ thị hàm số, đồ thị cắt trục hoành tại điểm có hoành độ \(2\) nên điểm \(B\left( {2;0} \right)\) thuộc đồ thị hàm số.
Thay tọa độ điểm \(A\left( {0; - 4} \right)\) vào hàm số \(y = ax + b\) ta được \( - 4 = 0.a + b \Leftrightarrow b = - 4\) \( \Rightarrow y = a.x - 4\)
Thay tọa độ điểm \(B\left( {2;0} \right)\) vào hàm số \(y = a.x - 4\) ta được \(0 = a.2 - 4 \Leftrightarrow 2a = 4 \Leftrightarrow a = 2.\)
Vậy \(a = 2;b = - 4.\)
Đồ thị của nó đi qua hai điểm \(A\left( {1;3} \right),B\left( {2;4} \right)\)
Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng ta được:
$\left\{ \begin{array}{l}3 = a + b\,\,\left( 1 \right)\\4 = 2a + b\,\,\left( 2 \right)\end{array} \right.$.
Từ \(\left( 1 \right)\) ta có \(b = 3 - a\) . Thay \(b = 3 - a\) vào \(\left( 2 \right)\) ta được \(4 = 2a + 3 - a \Leftrightarrow a = 1 \Rightarrow b = 2\) .
Vậy \(a = 1,b = 2\).
Đồ thị của nó đi qua hai điểm \(A\left( {1;3} \right),B\left( {2;4} \right)\)
Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng ta được:
$\left\{ \begin{array}{l}3 = a + b\,\,\left( 1 \right)\\4 = 2a + b\,\,\left( 2 \right)\end{array} \right.$.
Từ \(\left( 1 \right)\) ta có \(b = 3 - a\) . Thay \(b = 3 - a\) vào \(\left( 2 \right)\) ta được \(4 = 2a + 3 - a \Leftrightarrow a = 1 \Rightarrow b = 2\) .
Vậy \(a = 1,b = 2\).
Đồ thị của nó cắt trục tung tại điểm có tung độ bằng \( - 4\) và cắt trục hoành tại điểm có hoành độ bằng \(2\).
Vì đồ thị cắt trục tung tại điểm có tung độ bằng \( - 4\) nên điểm \(A\left( {0; - 4} \right)\) thuộc đồ thị hàm số, đồ thị cắt trục hoành tại điểm ó hoành độ \(2\) nên điểm \(B\left( {2;0} \right)\) thuộc đồ thị hàm số.
Thay tọa độ điểm \(A\left( {0; - 4} \right)\) vào hàm số \(y = ax + b\) ta được: \( - 4 = 0.a + b \Leftrightarrow b = - 4\) \( \Rightarrow y = a.x - 4\)
Thay tọa độ điểm \(B\left( {2;0} \right)\) vào hàm số \(y = a.x - 4\) ta được: \(0 = a.2 - 4 \Leftrightarrow 2a = 4 \Leftrightarrow a = 2.\)
Vậy \(a = 2;b = - 4.\)
Đồ thị của nó đi qua hai điểm \(A\left( {1;3} \right),B\left( {2;4} \right)\):
Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng ta được:
$\left\{ \begin{array}{l}3 = a + b\,\,\left( 1 \right)\\4 = 2a + b\,\,\left( 2 \right)\end{array} \right.$
Từ \(\left( 1 \right)\) ta có \(b = 3 - a\) . Thay \(b = 3 - a\) vào \(\left( 2 \right)\) ta được: \(4 = 2a + 3 - a \Leftrightarrow a = 1 \Rightarrow b = 2\) .
Vậy \(a = 1,b = 2\).
Đồ thị của nó đi qua hai điểm \(A\left( {1;3} \right),B\left( {2;4} \right)\):
Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng ta được:
$\left\{ \begin{array}{l}3 = a + b\,\,\left( 1 \right)\\4 = 2a + b\,\,\left( 2 \right)\end{array} \right.$
Từ \(\left( 1 \right)\) ta có \(b = 3 - a\) . Thay \(b = 3 - a\) vào \(\left( 2 \right)\) ta được: \(4 = 2a + 3 - a \Leftrightarrow a = 1 \Rightarrow b = 2\) .
Vậy \(a = 1,b = 2\).
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\) thỏa mãn $x = \left| y \right|$.
Từ phương trình (1) ta có: \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\).
Ta có: \(x = \left| y \right| \Leftrightarrow \dfrac{3}{{2m - 1}} = \left| {\dfrac{{4 - 5m}}{{2m - 1}}} \right|\) (4)
Từ (4) suy ra: \(2m - 1 > 0 \Leftrightarrow m > \dfrac{1}{2}\). Với điều kiện: \(m > \dfrac{1}{2}\) ta có:
\(\left( 4 \right) \Leftrightarrow \left| {4 - 5m} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}4 - 5m = 3\\4 - 5m = - 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{1}{5}\left( l \right)\\m = \dfrac{7}{5}\end{array} \right.\).
Vậy \(m = \dfrac{7}{5}\).
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) trong đó $x,y$ trái dấu.
Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\). Ta có: \(x.y = \dfrac{{3\left( {4 - 5m} \right)}}{{{{\left( {2m - 1} \right)}^2}}}\). Do đó \(x.y < 0 \Leftrightarrow 4 - 5m < 0 \Leftrightarrow m > \dfrac{4}{5}\) (thỏa mãn điều kiện).
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) trong đó $x,y$ trái dấu.
Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\). Ta có: \(x.y = \dfrac{{3\left( {4 - 5m} \right)}}{{{{\left( {2m - 1} \right)}^2}}}\). Do đó \(x.y < 0 \Leftrightarrow 4 - 5m < 0 \Leftrightarrow m > \dfrac{4}{5}\) (thỏa mãn điều kiện).
Tìm \(m\) để hệ trên có nghiệm duy nhất sao cho \(x.y\) đạt giá trị nhỏ nhất.
Theo câu trước ta có hệ có nghiệm duy nhất khi và chỉ khi \(m \ne \pm 1\).
Khi đó: \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\) Suy ra: \(y = x - 2.\)
Nên \(xy = x.\left( {x - 2} \right) = {x^2} - 2x + 1 - 1 = {\left( {x - 1} \right)^2} - 1 \ge - 1\)
Dấu bằng xảy ra khi và chỉ khi: \(x = 1 \Leftrightarrow 3 - \dfrac{2}{{m + 1}} = 1 \Leftrightarrow \dfrac{2}{{m + 1}} = 2 \Leftrightarrow m + 1 = 1 \Leftrightarrow m = 0\).
Vậy với \(m = 0\) thì \(x.y\) đạt giá trị nhỏ nhất.
Trong trường hợp hệ có nghiệm duy nhất \(\left( {x;y} \right)\) thì điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng nào dưới đây?
Theo câu trước ta có hệ có nghiệm duy nhất khi và chỉ khi \(m \ne \pm 1\).
Khi đó: \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\)
Suy ra: $x - y = 3 - \dfrac{2}{{m + 1}} - \left( {1 - \dfrac{2}{{m + 1}}} \right) = 2$
Vậy điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng cố định có phương trình \(y = x - 2\).
Tìm số nguyên \(m\) sao cho hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) mà $x,y$ đều là số nguyên.
Từ phương trình (2) ta có \(y = 3m - 1 - mx\). Thay vào phương trình (1) ta được:\(x + m\left( {3m - 1 - mx} \right) = m + 1 \Leftrightarrow \left( {{m^2} - 1} \right)x = 3{m^2} - 2m - 1\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi phương trình (3) có nghiệm duy nhất, tức là \({m^2} - 1 \ne 0 \Leftrightarrow m \ne \pm 1\).
Khi đó: \(\left\{ \begin{array}{l}x = \dfrac{{3{m^2} - 2m - 1}}{{{m^2} - 1}} = \dfrac{{\left( {m - 1} \right)\left( {3m + 1} \right)}}{{\left( {m - 1} \right).\left( {m + 1} \right)}} = \dfrac{{3m + 1}}{{m + 1}}\\y = 3m - 1 - m.\dfrac{{3m + 1}}{{m + 1}} = \dfrac{{m - 1}}{{m + 1}}\end{array} \right.\)
Hay \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\)
Vậy \(x,y\) nguyên khi và chỉ khi \(\dfrac{2}{{m + 1}}\) nguyên. Do đó \(m + 1\) chỉ có thể là \( - 2; - 1;1;2\). Vậy \(m \in \left\{ { - 3; - 2;0} \right\}\) (thỏa mãn) hoặc \(m = 1\) (loại).