Bài tập hay và khó chương hệ thức lượng trong tam giác vuông

Câu 21 Trắc nghiệm

Cho hình thang \(ABCD\) có \(\widehat A = \widehat D = {90^0},\widehat B = {60^0},CD = 30cm,CA \bot CB\). Tính diện tích của hình thang.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\tan \widehat{CAD}=\dfrac{DC}{AD}\Leftrightarrow  AD=DC:\tan 60^0=AD = 10\sqrt 3$ \(\left( {cm} \right)\).

Kẻ \(CH \bot AB\). Tứ giác \(AHCD\) là hình chữ nhật vì có \(\widehat A = \widehat D = \widehat H = {90^0}\), suy ra \(AH = CD = 30cm;CH = AD = 10\sqrt 3 \left( {cm} \right)\).

Tam giác \(ACB\) vuông tại \(C\), ta có: \(C{H^2} = HA.HB\), suy ra \(HB = \dfrac{{C{H^2}}}{{HA}} = \dfrac{{{{\left( {10\sqrt 3 } \right)}^2}}}{{30}} = \dfrac{{300}}{{30}} = 10\left( {cm} \right)\),

do đó \(AB = AH + HB = 30 + 10 = 40\left( {cm} \right).\)

\({S_{ABCD}} = \dfrac{1}{2}CH\left( {AB + CD} \right)=\dfrac{1}{2}.10\sqrt 3 .\left( {40 + 30} \right) = 350\sqrt 3 \left( {c{m^2}} \right).\)

Vậy diện tích hình thang \(ABCD\) bằng \(350\sqrt 3 c{m^2}\)

Câu 22 Trắc nghiệm

Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\). Tính \(\tan B.\tan C\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \(\tan B = \dfrac{{AD}}{{BD}};\tan C = \dfrac{{AD}}{{CD}}\).

Suy ra \(\tan B.\tan C = \dfrac{{A{D^2}}}{{BD.CD}}\)   (1)

\(\widehat {HBD} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\)); \(\widehat {HDB} = \widehat {ADC} = {90^0}\).

Do đó \(\Delta BDH \backsim \Delta ADC\) (g.g), suy ra \(\dfrac{{DH}}{{DC}} = \dfrac{{BD}}{{AD}}\), do đó \(BD.DC = DH.AD\)  (2).

Từ (1) và (2) suy ra \(\tan B.\tan C = \dfrac{{A{D^2}}}{{DH.AD}} = \dfrac{{AD}}{{DH}}\)  (3).

Theo giả thiết \(\dfrac{{HD}}{{AH}} = \dfrac{1}{2}\) suy ra \(\dfrac{{HD}}{{AH + HD}} = \dfrac{1}{{2 + 1}}\) hay \(\dfrac{{HD}}{{AD}} = \dfrac{1}{3}\), suy ra \(AD = 3HD\).

Thay vào (3) ta được: \(\tan B.\tan C = \dfrac{{3HD}}{{DH}} = 3\).

Câu 23 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A\),\(AB < AC,\widehat C = \alpha  < {45^0}\), đường trung tuyến \(AM\), đường cao \(AH\), \(MA = MB = MC = a.\) Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Góc \(2\alpha \) là góc \(AMH\).

+ Ta có \(BC = 2AM;\,AH.BC = AB.AC \Rightarrow AH = \dfrac{{AB.AC}}{{BC}}\)  nên \(\sin 2\alpha  = \sin \widehat {AMH} = \dfrac{{AH}}{{AM}} = \dfrac{{2AH}}{{BC}}\)\( = 2.\dfrac{{AB.AC}}{{B{C^2}}} = 2.\dfrac{{AB}}{{BC}}.\dfrac{{AC}}{{BC}}\)

Mà theo định nghĩa tỉ số lượng giác của góc nhọn ta có \(\sin \alpha  = \dfrac{{AB}}{{BC}};\cos \alpha  = \dfrac{{AC}}{{BC}}\)  nên

\(\sin 2\alpha  = 2.\sin \alpha .\cos \alpha \)  hay A đúng.

+)  Ta có \(\cos 2\alpha  = \cos \widehat {AMH} = \dfrac{{HM}}{{AM}}\)  (trong tam giác vuông \(AMH\) ) ; \(A{C^2} = HC.BC \Rightarrow HC = \dfrac{{A{C^2}}}{{BC}}\) và \(\cos \alpha  = \dfrac{{AC}}{{BC}}\)  nên

\(1 + \cos 2\alpha  = 1 + \dfrac{{HM}}{{AM}} = \dfrac{{AM + HM}}{{AM}} = \dfrac{{HM + MC}}{{AM}} = \dfrac{{HC}}{{AM}}\) \( = 2\dfrac{{HC}}{{BC}} = 2\dfrac{{A{C^2}}}{{B{C^2}}} = 2{\cos ^2}\alpha ;\)

Do đó B đúng.

+) \(1 - \cos 2\alpha  = 1 - \dfrac{{HM}}{{AM}} = \dfrac{{AM - HM}}{{AM}} = \dfrac{{HB}}{{AM}}\)\( = 2\dfrac{{HB}}{{BC}} = 2\dfrac{{A{B^2}}}{{B{C^2}}} = 2{\sin ^2}\alpha \)

Do đó C đúng.

Vậy cả A, B, C đều đúng.

Câu 24 Trắc nghiệm

Cho tam giác $ABC$ vuông tại $C,$ đường cao $CK.$ Gọi \(H\)  và $I$ theo thứ tự là hình chiếu của K trên $BC$ và $AC.$ Gọi $M$ là chân đường vuông kẻ từ $K$ xuống $IH.$ Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Xét tứ giác \(HKIC\) có \(\widehat C = \widehat I = \widehat H = 90^\circ \) nên tứ giác \(HKIC\)  là hình chữ nhật suy ra \(HK = CI;HC = IK;KC = HI\) .

+) Xét tam giác vuông \(KHI\)  có \(KM\) là chiều cao nên theo hệ thức lượng ta có\(\dfrac{1}{{K{M^2}}} = \dfrac{1}{{K{H^2}}} + \dfrac{1}{{K{I^2}}} = \dfrac{1}{{C{I^2}}} + \dfrac{1}{{H{C^2}}}\)  (vì \(HK = CI;HC = IK\)) nên A đúng.

+)  Xét tam giác vuông \(KAC\) , theo hệ thức lượng ta có \(K{A^2} = AI.AC \Rightarrow AI = \dfrac{{K{A^2}}}{{AC}}\)

Xét tam giác vuông \(KBC\) , theo hệ thức lượng ta có \(K{B^2} = BH.BC \Rightarrow BH = \dfrac{{K{B^2}}}{{BC}}\)

Lại có theo hệ thức lượng trong tam giác vuông \(ABC\) thì \(A{C^2} = AK.AB \Rightarrow KA = \dfrac{{A{C^2}}}{{AB}}\) ;

\(B{C^2} = KB.AB \Rightarrow KB = \dfrac{{B{C^2}}}{{AB}}\) .

Từ đó ta có \(\dfrac{{AI}}{{BH}} = \dfrac{{K{A^2}}}{{AC}}:\dfrac{{K{B^2}}}{{BC}}\) $ = \left( {\dfrac{{A{C^2}}}{{AB}}:\dfrac{{B{C^2}}}{{AB}}} \right)^2.\dfrac{{BC}}{{AC}}$ \( = {\left( {\dfrac{{AC}}{{BC}}} \right)^4}.\dfrac{{BC}}{{AC}} = {\left( {\dfrac{{AC}}{{BC}}} \right)^3}\)

Do đó B đúng.

Hay cả A, B đều đúng.

Câu 25 Trắc nghiệm

Cho tam giác $ABC$ vuông tại $A,$ đường cao $AH.$ Gọi $D$ và $E$ lần lượt là hình chiếu vuông góc của $H$ trên $AB,{\rm{ }}AC.$ Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tứ giác \(DAEH\) có \(\widehat D = \widehat A = \widehat E = 90^\circ \)  nên nó là hình chữ nhật suy ra \(AH = DE.\)

Theo hệ thức lượng trong các tam giác vuông \(AHB;\,AHC\)  ta có

\(H{B^2} = BD.AB \Rightarrow BD = \dfrac{{H{B^2}}}{{AB}}\) ; \(H{C^2} = CE.CA \Rightarrow CE = \dfrac{{H{C^2}}}{{AC}}\)  nên ta có

\(BD.CE.BC = \dfrac{{H{B^2}}}{{AB}}.\dfrac{{H{C^2}}}{{AC}}.BC\)

\( = {\left( {HB.HC} \right)^2}.\dfrac{{BC}}{{AB.AC}}\) mà \(HB.HC = A{H^2}\)  (hệ thức lượng trong tam giác vuông \(ABC\) )

\( = A{H^4}.\dfrac{1}{{AH}} = A{H^3} = D{E^3}\) (vì \(AH = DE\) (cmt))

Vậy $D{E^3} = BD.CE.BC$.

Câu 26 Trắc nghiệm

Tính diện tích một tam giác vuông có chu vi \(72\,cm\), hiệu giữa đường trung tuyến và đường cao ứng với cạnh huyền bằng \(7\,cm.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt \(AM = x\,\left( {x > 0;cm} \right) \Rightarrow BC = 2x\,\left( {cm} \right);AH = x - 7\,\left( {cm} \right)\)

Vì chu vi tam giác \(ABC\) là \(72cm\) nên \(AB + AC + BC = 72 \Rightarrow AB + AC = 72 - 2x\,\left( {cm} \right)\)

Theo các hệ thức trong tam giác vuông:

\(A{B^2} + A{C^2} = B{C^2} = 4{x^2}\,\,\left( 1 \right)\) ; \(AB.AC = BC.AH = 2x\left( {x - 7} \right)\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(A{B^2} + A{C^2} + 2AB.AC = 4{x^2} + 4x\left( {x - 7} \right)\)

\( \Leftrightarrow {\left( {AB + AC} \right)^2} = 8{x^2} - 28x \Leftrightarrow {\left( {72 - 2x} \right)^2} = 8{x^2} - 28x\)

Đưa về phương trình \({x^2} + 65x - 1296 = 0 \Leftrightarrow \left( {x - 16} \right)\left( {x + 81} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 16\,\,\left( N \right)\\x =  - 81\,\,\left( L \right)\end{array} \right.\)

Từ đó \(BC = 32\,cm;\,AH = 9\,cm.\) Khi đó \({S_{ABC}} = \dfrac{1}{2}.32.9 = 144\,\,\left( {c{m^2}} \right)\)

Câu 27 Trắc nghiệm

Cho hình vuông \(ABCD\). Tính \(\cos \,\widehat {MAN}\)  biết rằng \(M,N\)  theo thứ tự là trung điểm của \(BC;CD.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(H\) là giao điểm của \(AN\)   và \(DM\).

Vì \(ABCD\) là hình vuông và \(M,N\)  theo thứ tự là trung điểm của \(BC;CD.\)

Nên \(AD = DC;\,DN = CM\)

Từ đó $\Delta ADN = \Delta DCM\,\left( {c.g.c} \right)$  nên \(\widehat {{A_1}} = \widehat {{D_1}} \Rightarrow AH \bot DM\)  (do $\widehat {{A_1}} + \widehat {AND} = 90^\circ  \Rightarrow \widehat {{D_1}} + \widehat {HND} = 90^\circ  \Rightarrow \widehat {DHN} = 90^\circ $ )

Suy ra \(\cos \widehat {MAN} = \dfrac{{AH}}{{AM}}\)

Đặt \(AB = AD = 2a\)  ta tính được \(AM = AN = a\sqrt 5 \)

Từ \(A{D^2} = AH.AN\)  ta có \(AH = \dfrac{{4a}}{{\sqrt 5 }}\) . Do đó

\(\cos \widehat {MAN} = \dfrac{{AH}}{{AM}} = \dfrac{{4a}}{{\sqrt 5 }}:\left( {a\sqrt 5 } \right) = \dfrac{4}{5}.\)