Khái niệm đạo hàm

Câu 21 Trắc nghiệm

Xét hai hàm số: \(\left( I \right):f\left( x \right) = \left| x \right|x,\,\,\left( {II} \right):g\left( x \right) = \sqrt x \) . Hàm số có đạo hàm tại $x = 0$ là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} x = 0\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - {x^2}}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\end{array} \right. \) \(\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = 0 \)

\(\Rightarrow \) Hàm số \(y = f\left( x \right)\) có đạo hàm tại $x = 0.$

\(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{g\left( x \right) - g\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt x }}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{1}{{\sqrt x }}= + \infty  \)

\(\Rightarrow \) Hàm số \(y = g\left( x \right)\) không có đạo hàm tại $x = 0.$

Câu 22 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{x}\,\,\,khi\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 0\end{array} \right.\). Giá trị của \(f'\left( 0 \right)\) bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:

$\begin{array}{l}f'(0)=\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{4{x^2} + 8}} - 2}}{{{x^2}}} - \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {8{x^2} + 4}  - 2}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^2}}}{{{x^2}\left( {{{\sqrt[3]{{4{x^2} + 8}}}^2} + 2\sqrt[3]{{4{x^2} + 8}} + 4} \right)}} - \mathop {\lim }\limits_{x \to 0} \dfrac{{8{x^2}}}{{{x^2}\left( {\sqrt {8{x^2} + 4}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{4}{{{{\sqrt[3]{{4{x^2} + 8}}}^2} + 2\sqrt[3]{{4{x^2} + 8}} + 4}} - \mathop {\lim }\limits_{x \to 0} \dfrac{8}{{\sqrt {8{x^2} + 4}  + 2}} = \dfrac{1}{3} - 2 =  - \dfrac{5}{3}\end{array}$

Câu 23 Trắc nghiệm

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ. Mệnh đề nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Dựa vào đồ thị hàm số ta thấy \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = 1,\,\,\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \Rightarrow \) Không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\), hàm số không liên tục tại $x = 1.$

Ngoài ra tại các điểm $x=0,x=2,x=3$ thì hàm số đều có đạo hàm.

Vậy hàm số không có đạo hàm tại $x = 1.$

Câu 24 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}\,\,\,khi\,\,x \ne 1\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \) \(= \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} - 0}}{{x - 1}} \) \(= \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x\left( {x - 3} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}\left( {x - 2} \right)}} \) \(= \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x\left( {x - 3} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} =  + \infty \)

\(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \) \(= \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} - 0}}{{x - 1}} \) \(= \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{x\left( {x - 3} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}\left( {x - 2} \right)}} \) \(= \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{x\left( {x - 3} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} =  - \infty \)

Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

Vậy hàm số không có đạo hàm tại $x = 1$.

Câu 25 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \dfrac{{{x^2} + \left| {x + 1} \right|}}{x}\). Tính đạo hàm của hàm số tại \({x_0} =  - 1\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}\)

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{\dfrac{{{x^2} + x + 1}}{x} + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{{x^2} + 2x + 1}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{x + 1}}{x} = 0\\\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{\dfrac{{{x^2} - x - 1}}{x} + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{{x^2} - 1}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{x - 1}}{x} = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} \ne \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}\end{array}\)

Do đó không tồn tại  \(\mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}\), vậy không tồn tại đạo hàm của hàm số tại \({x_0} =  - 1\).

Câu 26 Trắc nghiệm

Xét hai câu sau:

(1) Hàm số \(y = \dfrac{{\left| x \right|}}{{x + 1}}\) liên tục tại $x = 0.$

(2) Hàm số \(y = \dfrac{{\left| x \right|}}{{x + 1}}\) có đạo hàm tại $x = 0.$

Trong 2 câu trên:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \(y = \dfrac{{\left| x \right|}}{{x + 1}} = \left\{ \begin{array}{l}\dfrac{x}{{x + 1}}\,\,\,khi\,x \ge 0\\\dfrac{{ - x}}{{x + 1}}\,\,\,khi\,\,x < 0\end{array} \right.\)

Ta có $\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{x}{{x + 1}} = 0 = f\left( 0 \right)\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - x}}{{x + 1}} = 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( 0 \right) = 0 \Rightarrow $ Hàm số liên tục tại $x = 0.$

\(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) 

Ta có:

$\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{x}{{x + 1}} - 0}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{1}{{x + 1}} = 1\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{{ - x}}{{x + 1}} - 0}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - 1}}{{x + 1}} =  - 1\end{array} \right. \Rightarrow x = {x_0} \Rightarrow \mathop {\lim }\limits_{x \to x_0^ + } \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} \ne \mathop {\lim }\limits_{x \to x_0^ - } \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} \Rightarrow $ Hàm số không tồn tại đạo hàm tại $x = 0.$

Câu 27 Trắc nghiệm

Tìm $a$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\) có đạo hàm tại $x = 1.$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Để hàm số có đạo hàm của hàm số tại điểm $x = 1$ thì trước hết hàm số phải liên tục tại $x = 1,$ tức là \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right) \Leftrightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} - 1}}{{x - 1}} = a \) \(\Leftrightarrow \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = a \Leftrightarrow 2 = a\)

Khi đó hàm số có dạng: \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\)

\( \Rightarrow f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \) \(= \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} \) \(= \mathop {\lim }\limits_{x \to 1} \dfrac{{x + 1 - 2}}{{x - 1}} = 1\)

Vậy $a = 2.$

Câu 28 Trắc nghiệm

Tìm $a, b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 1}}{{x + 1}}\,\,khi\,\,x \ge 0\\ax + b\,\,khi\,\,x < 0\end{array} \right.\)  có đạo hàm tại điểm $x = 0.$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Trước tiên hàm số phải liên tục tại $x = 0.$

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{{x^2} + 1}}{{x + 1}} = 1= f\left( 0 \right)\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {ax + b} \right) = b \end{array}\)

Để hàm số liên tục tại $x = 0$ thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow b = 1\)

Khi đó ta có \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x}\)

Ta có

$\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{{{x^2} + 1}}{{x + 1}} - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{{x^2} - x}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{x - 1}}{{x + 1}} =  - 1\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {ax + 1} \right) - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} a = a\end{array}$

Để hàm số có đạo hàm tại $x = 0$ thì  $\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} \Leftrightarrow a =  - 1$

Vậy \(a =  - 1,b = 1\).

Câu 29 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx\,\,khi\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\). Tìm $a, b$ để hàm số có đạo hàm tại $x = 1.$

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {a{x^2} + bx} \right) = a + b = f\left( 1 \right)\\\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {2x - 1} \right) = 1\end{array}\)

Để hàm số liên tục tại $x = 1$ thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right) \Leftrightarrow a + b = 1\,\,\,\left( 1 \right)\)

Khi đó ta có: \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{a{x^2} + bx - \left( {a + b} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{a\left( {{x^2} - 1} \right) + b\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left[ {a\left( {x + 1} \right) + b} \right] = 2a + b\\\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{2x - 1 - \left( {a + b} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{2x - 2}}{{x - 1}} = 2\end{array}\)

Để hàm số có đạo hàm tại $x = 1$ thì \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \Leftrightarrow 2a + b = 2\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ: \(\left\{ \begin{array}{l}a + b = 1\\2a + b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)

Câu 30 Trắc nghiệm

Với hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \dfrac{\pi }{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Để tìm đạo hàm \(f'\left( 0 \right)\) một học sinh lập luận qua các bước sau:

Bước 1: \(\left| {f\left( x \right)} \right| = \left| x \right|\left| {\sin \dfrac{\pi }{x}} \right| \le \left| x \right|\)

Bước 2: Khi \(x \to 0\) thì \(\left| x \right| \to 0\)  nên \(\left| {f\left( x \right)} \right| \to 0 \Rightarrow f\left( x \right) \to 0\)

Bước 3: Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = 0\)  nên hàm số liên tục tại $x = 0.$

Bước 4: Từ $f(x)$ liên tục tại \(x = 0 \Rightarrow f\left( x \right)\) có đạo hàm tại $x = 0.$

Lập luận trên nếu sai thì bắt đầu từ bước nào?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Một hàm số liên tục tại $x_0$ chưa chắc có đạo hàm tại điểm đó, hơn nữa

$\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\sin \dfrac{\pi }{x} - 0}}{x} $ $= \mathop {\lim }\limits_{x \to 0} \sin \dfrac{\pi }{x} =  + \infty $ $\Rightarrow $ hàm số không có đạo hàm tại $x = 0.$

Lập luận trên sai từ bước 4.

Câu 31 Trắc nghiệm

Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right)\). Tính \(f'\left( 0 \right)\) ?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

$\begin{array}{l}f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right) - 0}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right) = \mathop {\lim }\limits_{x \to 0} \left( { - 1} \right)\left( { - 2} \right)\left( { - 3} \right)...\left( { - 1000} \right) = {\left( { - 1} \right)^{1000}}.1000! = 1000!\end{array}$

Câu 32 Trắc nghiệm

Tìm $a, b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 0\\a\sin x + b\cos x\,\,\,\,khi\,\,x < 0\end{array} \right.\)  có đạo hàm tại điểm \({x_0} = 0\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Để hàm số có đạo hàm tại $x = 1$ thì trước hết hàm số phải liên tục tại $x = 1.$

Ta có: \(f\left( 0 \right) = 1\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {a{x^2} + bx + 1} \right) = 1 = f\left( 0 \right)\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {a\sin x + b\cos x} \right) = b\end{array}\)

Để hàm số liên tục tại $x = 1$ thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow b = 1\)

Khi đó ta có: \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{a{x^2} + x + 1 - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \left( {ax + 1} \right) = 1\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{a\sin x + \cos x - 1}}{x} \\ = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{2a\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2}}}{x} \\ = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\mathop {\lim }\limits_{x \to {0^ - }} \left( {a\cos \dfrac{x}{2} - 2\sin \dfrac{x}{2}} \right) = a\end{array}\)

Để tồn tại \(f'\left( 0 \right) \) \(\Leftrightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \Leftrightarrow a = 1.\)

Câu 33 Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - \sin 3x}}{x}\) bằng :

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1:

Ta có: \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x - \sin 3x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} - \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 3x}}{x}\)

Bước 2:

\( = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} - \mathop {\lim }\limits_{x \to 0} \dfrac{{3.\sin 3x}}{{3x}} = 1 - 3 =  - 2\).