Kết quả:
0/12
Thời gian làm bài: 00:00:00
Tam thức bậc hai \(\left( {m - 1} \right){x^2} - 2x + m + 1 = 0\) đổi dấu hai lần trên \(\mathbb{R}\) khi
Cho \(f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\). Điều kiện để \(f\left( x \right) < 0\,,\,\forall x \in \mathbb{R}\) là
Tìm $m$ để $f\left( x \right) = {x^2} - 2\left( {2m - 3} \right)x + 4m - 3 > 0,\;\;\forall x \in \mathbb{R}$?
Cho \(f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\) có $\Delta = {b^2} - 4ac < 0$. Khi đó mệnh đề nào đúng?
Dấu của tam thức bậc 2: $f\left( x \right) = -{x^2} + 5x-6$ được xác định như sau:
Tập nghiệm của bất phương trình: $-{x^2} + 6x + 7\; \ge 0\;$là:
Cho \(f\left( x \right) = a{x^2} + bx + c\,{\rm{ }}\left( {a \ne 0} \right).\) Điều kiện để \(f\left( x \right) > 0\,,{\rm{ }}\forall x \in \mathbb{R}\) là
Tập nghiệm \(S\) của hệ bất phương trình $\left\{ \begin{array}{l}2 - x \ge 0\\{x^2} - 4x + 3 < 0\end{array} \right.$ là:
Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {\dfrac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}}} \) là
Bất phương trình \(\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \) có nghiệm là