Kết quả:
0/25
Thời gian làm bài: 00:00:00
Tam giác \(ABC\) có đoạn thẳng nối trung điểm của \(AB\) và \(BC\) bằng \(3\), cạnh \(AB = 9\) và \(\widehat {ACB} = 60^\circ \). Tính độ dài cạnh cạnh \(BC\).
Cho $A = \left\{ {1;2;3} \right\}$. Trong các khẳng định sau, khẳng định nào sai ?
Cho bất phương trình\( - 2x + \sqrt 3 y + \sqrt 2 \le 0\) có tập nghiệm là \(S\). Khẳng định nào sau đây là khẳng định đúng?
Giá trị của biểu thức $S = 3 - {\rm{si}}{{\rm{n}}^2}{\rm{9}}{0^0} + {\rm{ 2co}}{{\rm{s}}^2}{\rm{6}}{{\rm{0}}^0}{\rm{ - 3ta}}{{\rm{n}}^2}{45^0}$ bằng:
Miền nghiệm của bất phương trình \( - x + 2 + 2\left( {y - 2} \right) < 2\left( {1 - x} \right)\) không chứa điểm:
Cho hai tập \(A = \{ x \in R\left| {x + 3 < 4 + 2x\} } \right.\) và \(B = \{ x \in R\left| {5x - 3 < 4x - 1\} } \right.\)
Tất cả các số tự nhiên thuộc cả hai tập $A$ và $B$ là:
Phủ định của mệnh đề “\(9\) không phải số nguyên tố” là:
Cho hai tập hợp $A = \{ 0;1;2;3;4\} ,B = \{ 1;2;3\} $ . Trong các mệnh đề sau, tìm mệnh đề sai ?
Tìm mệnh đề đúng
Cho hai mệnh đề \(P,Q\). Phủ định của mệnh đề \(Q\) là:
Tam giác $ABC$ có ba cạnh là $5,12,13$. Khi đó, diện tích tam giác là:
Giá trị của biểu thức $P = m\sin {0^0} + {\rm{ ncos}}{{\rm{0}}^0}{\rm{ + p}}\sin {90^0}$ bằng:
Cho bất phương trình \(2x + 3y - 6 \le 0\,\,(1)\). Chọn khẳng định đúng trong các khẳng định sau
Chọn phương án trả lời đúng trong các phương án đã cho sau đây.
Mệnh đề "\(\exists x \in \mathbb{R}:{x^2} = 2\)" khẳng định rằng:
Trên một tấm bìa cac-tông có ghi 4 mệnh đề sau:
I. Trên tấm bìa này có đúng một mệnh đề sai.
II. Trên tấm bìa này có đúng hai mệnh đề sai.
III. Trên tấm bìa này có đúng ba mệnh đề sai.
IV. Trên tấm bìa này có đúng bốn mệnh đề sai.
Hỏi trên tấm bìa trên có bao nhiêu mệnh đề sai?
Trong các mệnh đề sau, mệnh đề nào sai ?
Gọi ${B_n}$ là tập hợp các số nguyên không âm là bội số của $n$. Sự liên hệ giữa $m$ và $n$ sao cho ${B_n} \subset {B_m}$ là:
Cho hai tập hợp $A{\rm{ }} = \{ 0;{\rm{ }}1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4\} ,{\rm{ }}B{\rm{ }} = \{ 2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6\} $ . Tập hợp $\left( {A\backslash B} \right) \cup \left( {B\backslash A} \right)$ bằng :
Miền biểu diễn nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}y \ge - 2\\x \ge 2\\2x + y \le 8\end{array} \right.\) có diện tích bằng bao nhiêu?
Biểu thức \(A = \dfrac{{\sin \left( { - {{328}^0}} \right).\sin {{958}^0}}}{{\cot {{572}^0}}} - \dfrac{{\cos \left( { - {{508}^0}} \right).\cos \left( { - {{1022}^0}} \right)}}{{\tan \left( { - {{212}^0}} \right)}}\) rút gọn bằng:
Cho góc \(\widehat {xOy} = 30^\circ \). Gọi \(A\) và \(B\) là hai điểm di động lần lượt trên \(Ox\) và \(Oy\) sao cho \(AB = 1\). Độ dài lớn nhất của đoạn \(OB\) bằng:
Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa $24$ $g$ hương liệu, $9$ lít nước và $210$ $g$ đường để pha chế nước cam và nước táo.
+ Để pha chế $1$ lít nước cam cần $30$ $g$ đường, $1$ lít nước và $1$ $g$ hương liệu;
+ Để pha chế $1$ lít nước táo cần $10$ $g$ đường, $1$ lít nước và $4$ $g$ hương liệu.
Mỗi lít nước cam nhận được $60$ điểm thưởng, mỗi lít nước táo nhận được $80$ điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?
Cho tam giác $ABC$ vuông tại $A$ có $AB = 5cm,BC = 13cm$. Gọi góc \(\widehat {ABC} = \alpha \) và \(\widehat {ACB} = \beta \) . Hãy chọn kết luận đúng khi so sánh \(\alpha \) và \(\beta \).
Cho hai đa thức $f\left( x \right)$ và $g\left( x \right)$ . Xét các tập hợp :
\(\begin{array}{l}A = \left\{ {x \in R|f\left( x \right) = 0} \right\}\\B = \left\{ {x \in R|g\left( x \right) = 0} \right\}\\C = \left\{ {x \in R|\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = 0} \right\}\end{array}\)
Trong các mệnh đề sau, mệnh đề nào đúng ?