Kết quả:
0/49
Thời gian làm bài: 00:00:00
Chọn phương án trả lời đúng trong các phương án đã cho sau đây.
Mệnh đề "\(\exists x \in \mathbb{R}:{x^2} = 2\)" khẳng định rằng:
Cho tập $A \ne \emptyset $ . Trong các mệnh đề sau, tìm mệnh đề sai ?
Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:
163 159 172 167 165 168 170 161
Khoảng biến thiên của mẫu số liệu này là:
Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:
163 159 172 167 165 168 170 161
Khoảng biến thiên của mẫu số liệu này là:
Trong mặt phẳng $Oxy$, cho $B\left( {5; - 4} \right),C\left( {3;7} \right)$. Tọa độ của điểm $E$ đối xứng với $C$ qua $B$ là
Tam giác \(ABC\) có đoạn thẳng nối trung điểm của \(AB\) và \(BC\) bằng \(3\), cạnh \(AB = 9\) và \(\widehat {ACB} = 60^\circ \). Tính độ dài cạnh cạnh \(BC\).
Với \(\overrightarrow {DE} \) (khác vectơ - không) thì độ dài đoạn \(ED\) được gọi là
Cho \(\overrightarrow a = m\overrightarrow i + n\overrightarrow j \) thì tọa độ véc tơ \(\overrightarrow a \) là:
Chọn phát biểu sai?
Cho $3$ điểm \(A\),\(B\),\(C\) phân biệt không thẳng hàng, $M$ là điểm bất kỳ. Mệnh đề nào sau đây đúng?
Nếu \(G\) là trọng tam giác $ABC$ thì đẳng thức nào sau đây đúng.
Cho góc \(x\) thoả ${0^0} < x < {90^0}$ . Trong các mệnh đề sau, mệnh đề nào sai:
Tập \(A = \{ x \in R\left| {1 < x \le 2\} } \right.\) được viết lại dưới dạng đoạn, khoảng là:
Chiều dài một cái cầu là \(l= 1745,25 m ± 0,01 m\). Số quy tròn của số gần đúng \(1745,25\) là
Trong tam giác $ABC$, tìm hệ thức sai.
Trên đường thẳng $MN$ lấy điểm $P$ sao cho \(\overrightarrow {MN} = - 3\overrightarrow {MP} \). Điểm $P$ được xác định đúng trong hình vẽ nào sau đây:
Cho hình vuông $ABCD$, tính ${\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {CA} } \right)$
Câu nào sau đây không phải là mệnh đề?
Trong các khẳng định sau khẳng định nào đúng?
Cho tam giác $ABC$ với trung tuyến $AM$ và trọng tâm $G$. Khi đó $\overrightarrow {GA} = $
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Cho bất phương trình \(2x + 3y - 6 \le 0\,\,(1)\). Chọn khẳng định đúng trong các khẳng định sau
Cho hình vuông \(ABCD\) tâm \(O\). Hỏi mệnh đề nào sau đây sai?
Cho hai mệnh đề \(P,Q\), chọn mệnh đề đúng:
Cho 3 điểm$A,{\rm{ }}B,{\rm{ }}C$. Đẳng thức nào sau đây đúng.
Cho hai tập hợp $A = \{ 0;1;2;3;4\} ,B = \{ 1;2;3\} $ . Trong các mệnh đề sau, tìm mệnh đề sai ?
Tìm mệnh đề đúng
Ký hiệu nào sau đây là để chỉ $6$ là số tự nhiên ?
Cho điểm \(M\left( { - 3;1} \right)\), khi đó:
Cho mệnh đề \(P\): “\(35\) là số có hai chữ số”. Mệnh đề \(Q\) nào dưới đây thỏa mãn \(P \Rightarrow {\rm{Q}}\) là mệnh đề sai?
Cho tam giác đều $ABC$ cạnh $a$. Khi đó $\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = $
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình$\left\{ {\begin{array}{*{20}{c}}{2x + 3y - 1 > 0}\\{5x - y + 4 < 0}\end{array}} \right.$?
Mệnh đề nào sau đây đúng?
Xác định tính đúng sai của mệnh đề sau và tìm phủ định của nó :
F: " \(\exists a \in \mathbb{R}\): \(a + 1 + \dfrac{1}{{a + 1}} \le 2\)"
Gọi ${B_n}$ là tập hợp bội số của $n$ trong $N$ . Tập hợp ${B_3} \cap {B_6}$ là:
Cho 2 tập hợp $A = \left\{ {x \in R|\left| x \right| > 4} \right\}$, $B = \left\{ {x \in R| - 5 \le x - 1 < 5} \right\}$, chọn mệnh đề sai:
Miền nghiệm (phần không bị gạch) của bất phương trình \(3x - 2y > - 6\) là
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x - \dfrac{3}{2}y \ge 1\\4x - 3y \le 2\end{array} \right.\) có tập nghiệm \(S\). Khẳng định nào sau đây là khẳng định đúng?
Rút gọn biểu thức ${\rm{S}} = \cos {\rm{(9}}{{\rm{0}}^0} - x)\sin \left( {{{180}^0} - x} \right) $ $- {\rm{\sin (9}}{{\rm{0}}^0} - x)\cos \left( {{{180}^0} - x} \right)$ ta được kết quả:
Tam giác $ABC$ có $BC = 10$ và \(\widehat A = {30^0}\). Khi đó, bán kính đường tròn ngoại tiếp tam giác $ABC$ là:
Cho hình thang $ABCD$ có \(AB\) song song với \(CD\). Cho $AB = 2a;CD = a$. Gọi \(O\) là trung điểm của \(AD\). Khi đó :
Hãy chọn kết quả đúng khi phân tích vectơ $\overrightarrow {AM} $ theo hai véctơ $\overrightarrow {AB} $ và $\overrightarrow {AC} $ của tam giác \(ABC\) với trung tuyến $AM$.
Trong mặt phẳng $Oxy$, gọi $B',B''$ và $B'''$ lần lượt là điểm đối xứng của $B\left( { - 2;7} \right)$ qua trục $Ox$,$Oy$ và qua gốc tọa độ $O$. Tọa độ của các điểm $B',\,B''$ và $B'''$ là:
Cho hình thang vuông \(ABCD\) có đáy lớn \(AB = 4a\), đáy nhỏ \(CD = 2a\), đường cao \(AD = 3a\); \(I\) là trung điểm của \(AD\) . Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {ID} \) bằng :
Bảng sau đây cho biết số lần học tiếng Anh trên internet trong một tuần của một số học sinh lớp 10:
Hãy tìm các tứ phân vị cho mẫu số liệu này.
Các tứ phân vị \({Q_1};{\mkern 1mu} {Q_2};{\mkern 1mu} {Q_3}\) của mẫu số liệu này lần lượt là:
Cho tam giác $ABC$ vuông tại $A$ có $AB = 5cm,BC = 13cm$. Gọi góc \(\widehat {ABC} = \alpha \) và \(\widehat {ACB} = \beta \) . Hãy chọn kết luận đúng khi so sánh \(\alpha \) và \(\beta \).
Cho tam giác $ABC$. Tập hợp những điểm \(M\) sao cho: \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MC} + \overrightarrow {MB} } \right|\) là:
Tìm $m$ để \(\left[ { - 1;1} \right] \cap \left[ {m - 1;m + 3} \right] \ne \emptyset \)
Gọi M, N lần lượt là trung điểm các cạnh CD, AB của hình bình hành ABCD. Tìm mệnh đề đúng trong các mệnh đề sau:
Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa $24$ $g$ hương liệu, $9$ lít nước và $210$ $g$ đường để pha chế nước cam và nước táo.
+ Để pha chế $1$ lít nước cam cần $30$ $g$ đường, $1$ lít nước và $1$ $g$ hương liệu;
+ Để pha chế $1$ lít nước táo cần $10$ $g$ đường, $1$ lít nước và $4$ $g$ hương liệu.
Mỗi lít nước cam nhận được $60$ điểm thưởng, mỗi lít nước táo nhận được $80$ điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?