Kết quả:
0/50
Thời gian làm bài: 00:00:00
Trong các mệnh đề sau đây, mệnh đề nào đúng?
Cho các phát biểu sau, hỏi có bao nhiêu phát biểu là mệnh đề ?
1) Hà Nội là thủ đô của Việt Nam.
2) \(\forall x \in R,\;5x - {x^2} > 1\).
3) $6x + 1 > 3$.
4) Phương trình ${x^2} + 3x-1 = 0$ có nghiệm.
Các phát biểu nào sau đây không thể là phát biểu của mệnh đề đúng \(P \Rightarrow Q\)
Cho tam giác $ABC$ có \(\widehat B = {60^0},\widehat C = {45^0}\) và $AB = 5$. Kết quả nào trong các kết quả sau là độ dài của cạnh $AC$?
Phủ định của mệnh đề “\(9\) không phải số nguyên tố” là:
Cho tập hợp $A = \left\{ {x \in R|\left( {{x^2}-1} \right)\left( {{x^2} + {\rm{ }}2} \right) = 0} \right\}$ . Tập hợp $A$ là:
Tam giác \(ABC\) có đoạn thẳng nối trung điểm của \(AB\) và \(BC\) bằng \(3\), cạnh \(AB = 9\) và \(\widehat {ACB} = 60^\circ \). Tính độ dài cạnh cạnh \(BC\).
Cho các mệnh đề:
(1) “\(\sqrt 2 \) là số hữu tỉ”.
(2) “\(5\) không chia hết cho \(3\)”.
(3) “Tam giác có tổng số đo các góc bằng \({180^0}\)”.
(4) “Hình vuông có bốn góc bằng nhau”.
Số mệnh đề có mệnh đề phủ định là mệnh đề đúng là:
Phần không gạch (không kể d) hình sau là miền nghiệm của bất phương trình nào?
Cho tập $A \ne \emptyset $ . Trong các mệnh đề sau, tìm mệnh đề sai ?
Cho bất phương trình bậc nhất hai ẩn \(x + 2y \ge 0\).
Với y=0, có bao nhiêu giá trị của x thỏa mãn bất phương trình đã cho?
Mệnh đề nào sau đây sai?
Cho hai tập hợp $X = \{ x \in N|x$ là bội số chung của $4$ và $6\}$.
$Y = \{ x \in N|x$ là bội số của $12\} $.
Trong các mệnh đề sau, mệnh đề nào sai ?
Cặp số nào sau đây là nghiệm của bất phương trình \(2x - 3y < 3\)?
\(\left( {2;1} \right)\)
\(\left( {2;1} \right)\)
\(\left( {2;1} \right)\)
Giá trị của biểu thức $S = 3 - {\rm{si}}{{\rm{n}}^2}{\rm{9}}{0^0} + {\rm{ 2co}}{{\rm{s}}^2}{\rm{6}}{{\rm{0}}^0}{\rm{ - 3ta}}{{\rm{n}}^2}{45^0}$ bằng:
Trong các khẳng định sau, khẳng định nào sai?
Cho hai tập hợp $A{\rm{ }} = \{ 2;{\rm{ }}4;{\rm{ }}6;{\rm{ }}9\} ,{\rm{ }}B{\rm{ }} = \{ 1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4\} $ . Tập hợp $A{\rm{ }}\backslash {\rm{ }}B$ bằng tập hợp nào sau đây ?
Trong tam giác \(ABC\) có:
Cho $A$ là tập hợp các ước nguyên dương của $24,{\rm{ }}B$ là tập hợp các ước nguyên dương của $18$ . Xác định tính sai của các kết quả sau:
Trong các khẳng định sau khẳng định nào đúng?
Trong các mệnh đề sau, mệnh đề sai là:
Cho bất phương trình\( - 2x + \sqrt 3 y + \sqrt 2 \le 0\) có tập nghiệm là \(S\). Khẳng định nào sau đây là khẳng định đúng?
Cho hai mệnh đề \(P\) và \(Q.\) Phát biểu nào sau đây sai về mệnh đề đúng \(P \Leftrightarrow Q\) ?
Cho hai tập hợp: $A = \{ x|x$ là ước số nguyên dương của $12\} $
$B = \{ x|\;x$ là ước số nguyên dương của $18\} $
Tập hợp $A \cap B$ là:
Chọn mệnh đề đúng:
Những tính chất nào sau đây chứng tỏ rằng $B$ là một tập con của $A$ ?
Cho biểu thức $P = 3{\sin ^2}x + 4{\cos ^2}x$, biết $\cos x = \dfrac{1}{2}$. Giá trị của \(P\) bằng:
Trong tam giác $ABC$, tìm hệ thức sai.
Cho tập hợp B = \(\left( { - \infty ; - 2} \right] \cap \left[ { - 2; + \infty } \right)\). Khi đó tập hợp $B$ là:
Tam giác $ABC$ có ba cạnh là $5,12,13$. Khi đó, diện tích tam giác là:
Cho các mệnh đề:
(1) “\(\sqrt 3 \) là số vô tỉ nếu và chỉ nếu \(3\) là số hữu tỉ”.
(2) “Tứ giác là hình bình hành nếu và chỉ nếu nó là hình thang có hai cạnh bên bằng nhau”.
(3) “Tứ giác là hình thoi nếu và chỉ nếu nó là hình bình hành có hai cạnh kề bằng nhau ”.
(4) “\(3 > 4\) khi và chỉ khi \(1 > 2\)”.
Số mệnh đề sai là:
Xác định tính đúng sai của mệnh đề sau và tìm phủ định của nó :
F: " \(\exists a \in \mathbb{R}\): \(a + 1 + \dfrac{1}{{a + 1}} \le 2\)"
Cho tập hợp $A = \{ x \in N|x$ là ước chung của $36$ và $120\} $. Các phần tử của tập $A$ là:
Trong các tập hợp sau, tập hợp nào là tập rỗng ?
Cho hai tập hợp $A{\rm{ }} = \{ 0;{\rm{ }}1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4\} ,{\rm{ }}B{\rm{ }} = \{ 2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6\} $ . Tập hợp $\left( {A\backslash B} \right) \cup \left( {B\backslash A} \right)$ bằng :
Tìm $m$ để \(\left( {0;1} \right) \cap \left( {m;m + 3} \right) = \emptyset \)
Ông An muốn thuê một chiếc ô tô (có lái xe) trong một tuần. Giá thuê xe được cho như bảng sau:
Giả sử, từ thứ Hai đến thứ Sáu, tổng số kilômét ông An đi là x (km) và trong hai ngày cuối tuần, tổng số kilômét ông An đi là y (km). Viết bất phương trình biểu thị mối liên hệ giữa x và y sao cho
tổng số tiền ông An phải trả không quá 14 triệu đồng.
Miền nghiệm (phần không bị gạch) của bất phương trình \(3x - 2y > - 6\) là
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x - \dfrac{3}{2}y \ge 1\\4x - 3y \le 2\end{array} \right.\) có tập nghiệm \(S\). Khẳng định nào sau đây là khẳng định đúng?
Cho hệ \(\left\{ \begin{array}{l}2x + 3y < 5\,\,\,(1)\\x + \dfrac{3}{2}y < 5\,\,\,(2)\end{array} \right.\). Gọi \({S_1}\) là tập nghiệm của bất phương trình (1), \({S_2}\) là tập nghiệm của bất phương trình (2) và \(S\) là tập nghiệm của hệ thì
Rút gọn biểu thức $A = \dfrac{{\sin ( - {{234}^0}) - \cos {\rm{21}}{{\rm{6}}^0}}}{{\sin {{144}^0} - \cos {{126}^0}}}.\tan {36^0}$, ta được kết quả
Rút gọn biểu thức ${\rm{S}} = \cos {\rm{(9}}{{\rm{0}}^0} - x)\sin \left( {{{180}^0} - x} \right) $ $- {\rm{\sin (9}}{{\rm{0}}^0} - x)\cos \left( {{{180}^0} - x} \right)$ ta được kết quả:
Cho tam giác $ABC$ có $AB = 8cm,AC = 18cm$ và có diện tích bằng \(64c{m^2}\). Giá trị $\sin \widehat A$ là:
Cho tam giác $ABC$ có $AB = 4cm,BC = 7cm,CA = 9cm$. Giá trị $\cos A$ là:
Tam giác $ABC$ có $BC = 10$ và \(\widehat A = {30^0}\). Khi đó, bán kính đường tròn ngoại tiếp tam giác $ABC$ là:
Cho hai đa thức $f\left( x \right)$ và $g\left( x \right)$ . Xét các tập hợp :
$A = \left\{ {x \in R|f\left( x \right) = 0} \right\};\;B = \left\{ {x \in R|g\left( x \right) = 0} \right\};\;C = \left\{ {x \in R|{f^2}\left( x \right) + {g^2}\left( x \right) = 0} \right\}$
Trong các mệnh đề sau, mệnh đề nào đúng ?
Giá trị lớn nhất của $6{\cos ^2}x + 6\sin x-2$ là:
Một công ty Y cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có 2 loại xe, trong đó có 10 xe loại \(A\) và 9 xe loại \(B\). Một chiếc xe loại \(A\) cho thuê với giá 4 triệu, một chiếc xe loại \(B\) cho thuê với giá 3 triệu. Biết rằng mỗi xe loại \(A\) có thể chở 20 người và 0,6 tấn hàng; mỗi xe loại \(B\) có thể chở tối đa 10 người và 1,5 tấn Công ty X cần thuê bao nhiêu xe mỗi loại để chi phí bỏ ra ít nhất?
5 xe loại \({\rm{A}}\) và 4 xe loại \({\rm{B}}\)
5 xe loại \({\rm{A}}\) và 4 xe loại \({\rm{B}}\)
5 xe loại \({\rm{A}}\) và 4 xe loại \({\rm{B}}\)
Một công ty kinh chuẩn bị cho đợt khuyến mại nhằm mục đích thu hút khác hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên internet và truyền hình. Chi phí cho 1 phút quảng cáo trên internet là 800.000 đồng, trên sóng truyền hình là 4.000.000 đồng. Trang internet chỉ nhận phát các chương trình quảng cáo ngắn nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dì tối đa là 4 phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên internet. Công ty dự định chi tối đa 16.000.000 đồng cho quảng cáo. Công ty cần đặt thời lượng quảng cáo trên internet và truyền hình như thế nào để hiệu quả nhất?
Cho tam giác $ABC$ vuông tại $A$ có $AB = 5cm,BC = 13cm$. Gọi góc \(\widehat {ABC} = \alpha \) và \(\widehat {ACB} = \beta \) . Hãy chọn kết luận đúng khi so sánh \(\alpha \) và \(\beta \).