Góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn

Câu 41 Trắc nghiệm

Cho ΔABC nhọn nội tiếp đường tròn (O). Vẽ phân giác trong AD của góc A (D ≠ (O)). Lấy điểm E thuộc cung nhỏ AC. Nối BE cắt AD và AC lần lượt tại I và tại K, nối DE cắt AC tại J. Kết luận nào đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có  $\widehat {BID}$ là góc có đỉnh nằm trong đường tròn (O) chắn hai cung BD và AE

$ \Rightarrow \widehat {BID} = \dfrac{1}{2}\left( {s{\rm{đ}}\overparen{BD} + sđ\overparen{AE}} \right)$

+) $\widehat {{\rm{AJ}}E}$ là góc có đỉnh nằm trong đường tròn (O) chắn hai cung CD và AE

\( \Rightarrow \widehat {AJE} = \dfrac{1}{2}(sđ\overparen{AE }+ \)sđ\(\overparen{DC})\)

Mà AD là phân giác của góc A nên sđ$\overparen{BD} = $sđ$\overparen{CD}$

Suy ra $\widehat {BID} = \widehat {{\rm{AJ}}E}$

Câu 42 Trắc nghiệm

Cho đường tròn (O). Từ một điểm M nằm ngoài (O), vẽ các cát tuyến MCA và MBD sao cho góc $\widehat {CMD} = {40^0}$. Gọi E là giao điểm của AD và BC. Biết $\widehat {AEB} = {70^0}$, số đo cung lớn AB là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

$\begin{array}{l}\widehat {DEB} = \dfrac{1}{2}\left( {sđ\overparen{DB} - sđ\overparen{AC}} \right) = {70^0}\\ \Rightarrow s{\rm{đ}}\overparen{DB} - sđ\overparen{AC} = {140^0}\left( 1 \right)\\\widehat {AMD} = \dfrac{1}{2}\left( {sđ\overparen{AD} - sđ\overparen{BC}} \right) = {40^0}\\ \Rightarrow sđ\overparen{AD} - sđ\overparen{BC} = {80^0}\left( 2 \right)\\sđ\overparen{AC} + sđ\overparen{CB} + sđ\overparen{DB} + sđ\overparen{AD} = {360^0}\left( 3 \right)\\(1) + (2) + (3) \Rightarrow 2\left( {sđ\overparen{DB} + sđ\overparen{AD}} \right) = {580^0}\\ \Leftrightarrow sđ\overparen{DB} + sđ\overparen{AD} = {290^0}\\ \Leftrightarrow sđ\overparen{AB} = {290^0}\end{array}$

Câu 43 Trắc nghiệm

Cho tam giác ABC nội tiếp trong đường tròn (O). Trên các cung nhỏ AB và AC lần lượt lấy các điểm I, K sao cho cung AI = cung AK. Dây IK cắt các cạnh AB, AC lân lượt tại D và E.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Ta có  $\widehat {ADK}$ là góc có đỉnh nằm trong đường tròn nên

$\begin{array}{l}\widehat {ADK} = \dfrac{1}{2}\left( {sđ\overparen{AK} + sđ\overparen{IB}} \right) = \dfrac{1}{2}\left( {sđ\overparen{AI} + sđ\overparen{IB}} \right)\\ = \dfrac{1}{2}sđ\overparen{AB} = \widehat {ACB}\end{array}$

+)Ta có $\widehat {ADI}$ là góc có đỉnh nằm trong đường tròn nên

$\begin{array}{l}\widehat {ADI} = \dfrac{1}{2}\left( {sđ\overparen{KB} + sđ\overparen{IA}} \right) \\= \dfrac{1}{2}\left( {sđ\overparen{KB} + sđ\overparen{IA}} \right)\\ = \dfrac{1}{2}\left( {sđ\overparen{KB} + sđ\overparen{AK}} \right) \\= \dfrac{1}{2}sđ\overparen{AB} = \dfrac{1}{2}\left( {sđ\overparen{AC} + sđ\overparen{CB}} \right)\end{array}$

+)Ta có $\widehat {AEI}$ là góc có đỉnh ở trong đường tròn nên

$\widehat {AEI} = \dfrac{1}{2}\left( {sđ\overparen{AI} + sđ\overparen{KC}} \right) \\= \dfrac{1}{2}\left( {sđ\overparen{AK} + sđ\overparen{KC}} \right) = \dfrac{1}{2}sđ\overparen{AC} = \widehat {ABC}$

Câu 44 Trắc nghiệm

Cho đường tròn (O) và một dây AB. Vẽ đường kính CD vuông góc với AB (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm N. Các đường thẳng CN và DN lần lượt cắt các đường thẳng AB tại E và F. Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng AB tại I. Chọn đáp án đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có tam giác AOB cân tại O nên dễ dàng chỉ ra được $sđ\overparen{AD} = sđ\overparen{DB}$

$\begin{array}{l}\widehat {IFN} = \dfrac{1}{2}\left( {sđ\overparen{BN} + sđ\overparen{AD}} \right) \\= \dfrac{1}{2}\left( {sđ\overparen{BN} + sđ\overparen{BD}} \right)\\ = \dfrac{1}{2}sđ\overparen{DN} = \widehat {INF}\end{array}$

Suy ra tam giác FIN cân tại I

Ta có:

$\begin{array}{l}{\widehat N_1} + \widehat {{N_3}} = {90^0} \Rightarrow {\widehat N_1} + \widehat {{C_4}} = {90^0}\\\widehat {{E_1}} = \dfrac{1}{2}\left( {sđ\overparen{AC} - sđ\overparen{BN}} \right)\\ = \dfrac{1}{2}\left( {sđ\overparen{BC} - sđ\overparen{CN}} \right) = \dfrac{1}{2}sđ\overparen{NC}\\ \Rightarrow \widehat {{C_4}} + \widehat {{E_1}} = \dfrac{1}{2}sđ\overparen{DN} + \dfrac{1}{2}sđ\overparen{NC} \\= \dfrac{1}{2}sđ\overparen{DC} = {90^0}\\ \Rightarrow \widehat {{E_1}} = \widehat {{N_1}}\end{array}$

Do đó \(\Delta INE\) cân tại I.