Câu hỏi:
2 năm trước

Cho tam giác ABC nội tiếp trong đường tròn (O). Trên các cung nhỏ AB và AC lần lượt lấy các điểm I, K sao cho cung AI = cung AK. Dây IK cắt các cạnh AB, AC lân lượt tại D và E.

Trả lời bởi giáo viên

Đáp án đúng: d

+) Ta có  $\widehat {ADK}$ là góc có đỉnh nằm trong đường tròn nên

$\begin{array}{l}\widehat {ADK} = \dfrac{1}{2}\left( {sđ\overparen{AK} + sđ\overparen{IB}} \right) = \dfrac{1}{2}\left( {sđ\overparen{AI} + sđ\overparen{IB}} \right)\\ = \dfrac{1}{2}sđ\overparen{AB} = \widehat {ACB}\end{array}$

+)Ta có $\widehat {ADI}$ là góc có đỉnh nằm trong đường tròn nên

$\begin{array}{l}\widehat {ADI} = \dfrac{1}{2}\left( {sđ\overparen{KB} + sđ\overparen{IA}} \right) \\= \dfrac{1}{2}\left( {sđ\overparen{KB} + sđ\overparen{IA}} \right)\\ = \dfrac{1}{2}\left( {sđ\overparen{KB} + sđ\overparen{AK}} \right) \\= \dfrac{1}{2}sđ\overparen{AB} = \dfrac{1}{2}\left( {sđ\overparen{AC} + sđ\overparen{CB}} \right)\end{array}$

+)Ta có $\widehat {AEI}$ là góc có đỉnh ở trong đường tròn nên

$\widehat {AEI} = \dfrac{1}{2}\left( {sđ\overparen{AI} + sđ\overparen{KC}} \right) \\= \dfrac{1}{2}\left( {sđ\overparen{AK} + sđ\overparen{KC}} \right) = \dfrac{1}{2}sđ\overparen{AC} = \widehat {ABC}$

Hướng dẫn giải:

+) Nhận biết được góc có đỉnh nằm trong đường tròn, góc nội tiếp

+) Tính được số đo góc nằm trong đường tròn theo cung bị chắn

+) Nắm vững mối quan hệ góc nội tiếp và số đo cung bị chắn, mối uan hệ giữa số đo cung và dây cung

Câu hỏi khác