Căn thức bậc hai

Câu 41 Trắc nghiệm

Nghiệm của phương trình \(\sqrt {{x^2} + 6x + 9}  = 4 - x\) là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\sqrt {{x^2} +6x + 9}  = 4 - x\)

\(\Leftrightarrow \sqrt {{{\left( {x + 3} \right)}^2}}  = 4 - x\)

$ \Leftrightarrow \left| {x + 3} \right| = 4 - x \, \,\, ĐK: x \le 4 \\ \Leftrightarrow \left[ \begin{array}{l}x + 3 = 4 - x\\x + 3 = x - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = 1 \Leftrightarrow x = \dfrac{1}{2}\, \, (TM)\\3 =  - 4\,\left( L \right)\end{array} \right.$

Vậy phương trình có nghiệm $x = \dfrac{1}{2}$.

Câu 42 Trắc nghiệm

Rút gọn biểu thức $\dfrac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}}$ với $x < 3$ ta được

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\sqrt {{x^2} - 6x + 9}  = \sqrt {{{\left( {x - 3} \right)}^2}}  = \left| {x - 3} \right| = 3 - x$ vì $x < 3$.

Nên $\dfrac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}} = \dfrac{{3 - x}}{{x - 3}} = \dfrac{{ - \left( {x - 3} \right)}}{{\left( {x - 3} \right)}} =  - 1$

Câu 43 Trắc nghiệm

Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{m^2} + 2m + 1}  + \sqrt {{m^2} - 8m + 16} \).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(A = \sqrt {{m^2} + 2m + 1}  + \sqrt {{m^2} - 8m + 16} \)\( = \sqrt {{{\left( {m + 1} \right)}^2}}  + \sqrt {{{\left( {m - 4} \right)}^2}}  = \left| {m + 1} \right| + \left| {m - 4} \right|\)

Ta có \(\left| {m + 1} \right| + \left| {m - 4} \right| = \left| {m + 1} \right| + \left| {4 - m} \right| \ge \left| {m + 1 + 4 - m} \right| = 5\)

Dấu “=” xảy ra khi \(m + 1 = 4 - m \Leftrightarrow 2m = 3 \Leftrightarrow m = \dfrac{3}{2}\)

Suy ra GTNN của \(B\) là \(5 \Leftrightarrow m = \dfrac{3}{2}\) .

Câu 44 Trắc nghiệm

Rút gọn \(P = \sqrt {6 + \sqrt 8  + \sqrt {12}  + \sqrt {24} } \)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(\begin{array}{l}P = \sqrt {6 + \sqrt 8  + \sqrt {12}  + \sqrt {24} } \\ = \sqrt {6 + \sqrt {4.2}  + \sqrt {4.3}  + \sqrt {4.6} } \\ = \sqrt {6+ 2\sqrt 2  + 2\sqrt 3  + 2\sqrt 6 } \\ = \sqrt {2 + 3 + 1 + 2\sqrt 2  + 2\sqrt 3  + 2\sqrt 2 .\sqrt 3 } \\ = \sqrt {{{\left( {\sqrt 2  + \sqrt 3  + 1} \right)}^2}} \\ = \left| {\sqrt 2  + \sqrt 3  + 1} \right|\\ = \sqrt 2  + \sqrt 3  + 1\,\,\,\,\left( {do\,\,\,\sqrt 2  + \sqrt 3  + 1 > 0} \right).\end{array}\)

Câu 45 Trắc nghiệm

Giá trị của biểu thức \(A = \sqrt {3 - 2\sqrt 2 }  + \sqrt {5 - 2\sqrt 6 }  + \sqrt {7 - 2\sqrt {12} }  + ... + \sqrt {199 - 2\sqrt {9900} } \) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có:

\(A = \sqrt {3 - 2\sqrt 2 }  + \sqrt {5 - 2\sqrt 6 }  + \sqrt {7 - 2\sqrt {12} }  + ... + \sqrt {199 - 2\sqrt {9900} } \)

\( = \sqrt {2 - 2.\sqrt 2  + 1}  + \sqrt {3 - 2.\sqrt 3 .\sqrt 2  + 2}  + \sqrt {4 - 2.2.\sqrt 3  + 3}  + ..... + \sqrt {100 - 2.\sqrt {100.99}  + 99} \)

\( = \sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}}  + \sqrt {{{\left( {\sqrt 3  - \sqrt 2 } \right)}^2}}  + \sqrt {{{\left( {\sqrt 4  - \sqrt 3 } \right)}^2}}  + .... + \sqrt {{{\left( {\sqrt {100}  - \sqrt {99} } \right)}^2}} \)

\( = \left| {\sqrt 2  - 1} \right| + \left| {\sqrt 3  - \sqrt 2 } \right| + \left| {\sqrt 4  - \sqrt 3 } \right| + ... + \left| {10 - \sqrt {99} } \right|\)

\( = \sqrt 2  - 1 + \sqrt 3  - \sqrt 2  + \sqrt 4  - \sqrt 3  + ... + 10 - \sqrt {99} \) \(\left( {do\,\,\sqrt 2  - 1 > 0,.....,\,\,10 - \sqrt {99}  > 0} \right)\)

\( = 10 - 1 = 9\)

Câu 46 Trắc nghiệm

Giá trị nhỏ nhất của \(A = \sqrt {x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 10} \) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Điều kiện: \(x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 10 \ge 0\)
\(\begin{array}{l}A = \sqrt {x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 10} \\\,\,\,\,\, = \sqrt {\left[ {x\left( {x + 3} \right)} \right].\left[ {\left( {x + 1} \right)\left( {x + 2} \right)} \right] + 10} \\\,\,\,\,\,\, = \sqrt {\left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) + 10} \end{array}\)
Đặt \({x^2} + 3x = y\)
Khi đó, \(A\) trở thành:

\(\begin{array}{l}A = \sqrt {{y^2} + 2y + 10} \\A = \sqrt {{{\left( {y + 1} \right)}^2} + 9}  \ge \sqrt 9 \\ \Rightarrow A \ge 3\end{array}\)

Dấu “=” xảy ra khi và chỉ khi \(y =  - 1\)

Suy ra:

\(\begin{array}{l}{x^2} + 3x =  - 1\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 3 + \sqrt 5 }}{2}}\\{x = \frac{{ - 3 - \sqrt 5 }}{2}}\end{array}} \right.\end{array}\)

Vậy GTNN của A bằng 3 khi \(x = \frac{{ - 3 \pm \sqrt 5 }}{2}\)