Giá trị của biểu thức \(A = \sqrt {3 - 2\sqrt 2 } + \sqrt {5 - 2\sqrt 6 } + \sqrt {7 - 2\sqrt {12} } + ... + \sqrt {199 - 2\sqrt {9900} } \) là:
Trả lời bởi giáo viên
Ta có:
\(A = \sqrt {3 - 2\sqrt 2 } + \sqrt {5 - 2\sqrt 6 } + \sqrt {7 - 2\sqrt {12} } + ... + \sqrt {199 - 2\sqrt {9900} } \)
\( = \sqrt {2 - 2.\sqrt 2 + 1} + \sqrt {3 - 2.\sqrt 3 .\sqrt 2 + 2} + \sqrt {4 - 2.2.\sqrt 3 + 3} + ..... + \sqrt {100 - 2.\sqrt {100.99} + 99} \)
\( = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 4 - \sqrt 3 } \right)}^2}} + .... + \sqrt {{{\left( {\sqrt {100} - \sqrt {99} } \right)}^2}} \)
\( = \left| {\sqrt 2 - 1} \right| + \left| {\sqrt 3 - \sqrt 2 } \right| + \left| {\sqrt 4 - \sqrt 3 } \right| + ... + \left| {10 - \sqrt {99} } \right|\)
\( = \sqrt 2 - 1 + \sqrt 3 - \sqrt 2 + \sqrt 4 - \sqrt 3 + ... + 10 - \sqrt {99} \) \(\left( {do\,\,\sqrt 2 - 1 > 0,.....,\,\,10 - \sqrt {99} > 0} \right)\)
\( = 10 - 1 = 9\)
Hướng dẫn giải:
Biến đổi các biểu thức dưới dấu căn về bình phương của một hiệu sau đó áp dụng công thức để đưa biểu thức ra ngoài dấu căn.
Áp dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\ - A\,\,\,khi\,\,\,A < 0\end{array} \right..\)