Cho parabol \(\left( P \right):y = a{x^2}\left( {a \ne 0} \right)\) đi qua điểm \(A\left( { - 2;4} \right)\) và tiếp xúc với đồ thị \(\left( d \right)\) của hàm số \(y = 2(m - 1)x - (m - 1)\).Toạ độ tiếp điểm là
\(\left( P \right)\) đi qua điểm \(A\left( { - 2;4} \right)\) nên \(4 = a.{\left( { - 2} \right)^2} = 4a \Leftrightarrow a = 1\).
Vậy phương trình parabol \(\left( P \right)\) là \(y = {x^2}\).
Để \(\left( P \right)\) tiếp xúc với \(\left( d \right)\) thì phương trình hoành độ giao điểm \({x^2} - 2(m - 1)x + (m - 1) = 0\) có nghiệm kép
\( \Leftrightarrow \Delta ' = {( - (m - 1))^2} - m + 1 = 0\)\( \Leftrightarrow {m^2} - 2m + 1 - m + 1 = 0\)\( \Leftrightarrow {m^2} - 3m + 2 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 2\end{array} \right.\)
Nếu \(m = 1\) thì hoành độ giao điểm là \(x = 0\) . Vậy tiếp điểm \(\left( {0;0} \right)\)
Nếu \(m = 2\) thì hoành độ giao điểm là \(x = 1\) . Vậy tiếp điểm \(\left( {1;1} \right)\)
Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2x + m - 2\).
Giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,{x_2}\) sao cho \(\left| {{x_1} - {x_2}} \right| = 2\) là m=
Giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,{x_2}\) sao cho \(\left| {{x_1} - {x_2}} \right| = 2\) là m=
Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\):
\({x^2} = 2x + m - 2 \Leftrightarrow {x^2} - 2x - m + 2 = 0\,\,\left( * \right)\)
\(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) \( \Rightarrow \) Phương trình (*) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\).
\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 + m - 2 > 0 \Leftrightarrow m - 1 > 0 \Leftrightarrow m > 1\).
Khi đó theo định lí Vi-ét ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = - m + 2}\end{array}} \right.\)
Theo giả thiết:
\(\begin{array}{l}\,\,\,\,\,\,\,\left| {{x_1} - {x_2}} \right| = 2\\ \Leftrightarrow {\left| {{x_1} - {x_2}} \right|^2} = 4\\ \Leftrightarrow {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = 4\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 4\\ \Leftrightarrow 4 - 4\left( { - m + 2} \right) = 4\\ \Leftrightarrow 4\left( { - m + 2} \right) = 0\\ \Leftrightarrow - m + 2 = 0\\ \Leftrightarrow m = 2\,\,\,\left( {tm} \right)\end{array}\)
Vậy \(m = 2\).
Cho Parabol \(\left( P \right):y = - {x^2}\) và đường thẳng \(\left( d \right):y = 5x + 6\)
Tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là:
Hoành độ giao điểm của đồ thị \(\left( P \right)\) và \(\left( d \right)\) là nghiệm của phương trình:
\( - {x^2} = 5x + 6 \Leftrightarrow {x^2} + 5x + 6 = 0\)
Ta có: \(\Delta = {b^2} - 4ac = {5^2} - 4.6 = 1 > 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}x = \dfrac{{ - 5 + 1}}{2} = - 2\\x = \dfrac{{ - 5 - 1}}{2} = - 3\end{array} \right.\).
Với \(x = - 2 \Rightarrow y = - {\left( { - 2} \right)^2} = - 4\).
Với \(x = - 3 \Rightarrow y = - {\left( { - 3} \right)^2} = - 9\).
Vậy tọa độ các giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là \(A\left( { - 2; - 4} \right),\,\,B\left( { - 3; - 9} \right)\).
Cho Parabol \(\left( P \right):y = - {x^2}\) và đường thẳng \(\left( d \right):y = 5x + 6\)
Phương trình đường thẳng \(\left( {d'} \right)\) biết \(\left( {d'} \right)\) song song \(\left( d \right)\) và \(\left( {d'} \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},\,\,{x_2}\) sao cho \({x_1}.{x_2} = - 24\) là:
Vì \(\left( {d'} \right)\) song song \(\left( d \right)\) nên \(\left( {d'} \right)\) có dạng \(y = 5x + b\,\,\,\left( {b \ne 6} \right)\) (1)
Hoành độ giao điểm của đồ thị \(\left( P \right)\) và \(\left( {d'} \right)\) là nghiệm của phương trình:
\( - {x^2} = 5x + b \Leftrightarrow {x^2} + 5x + b = 0\,\,\left( * \right)\).
\(\left( {d'} \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt
\( \Rightarrow \) \(\Delta > 0 \Leftrightarrow {5^2} - 4b > 0 \Leftrightarrow b < \dfrac{{25}}{4}\) (2)
Khi đó, theo hệ thức Vi-ét ta có \({x_1}.{x_2} = b \Rightarrow b = - 24 < \dfrac{{25}}{4}\), thỏa mãn (1) và (2).
Vậy phương trình đường thẳng \(\left( {d'} \right)\) cần tìm là: \(\left( {d'} \right):y = 5x - 24\).
Cho parabol \(\left( P \right):\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,y = mx + 1,\) với \(m\) là tham số.
Tìm \(m\) để đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\) cùng đi qua điểm có hoành độ \(x = 2.\)
Gọi \(A\left( {2;\,\,{y_A}} \right)\) là điểm mà đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\) đều đi qua.
Khi đó ta có: \(A\left( {2;\,{y_A}} \right) \in \left( P \right)\) \( \Rightarrow {y_A} = {2^2} = 4\)\( \Rightarrow A\left( {2;\,\,4} \right).\)
Lại có: \(A\left( {2;\,\,4} \right) \in \left( d \right)\) \( \Rightarrow 4 = m.2 + 1 \Leftrightarrow m = \dfrac{3}{2}\)
Vậy \(m = \dfrac{3}{2}\) thỏa mãn bài toán.
Cho parabol \(\left( P \right):\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,y = mx + 1,\) với \(m\) là tham số.
Vị trí tương đối của đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\) là:
Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là: \({x^2} = mx + 1 \Leftrightarrow {x^2} - mx - 1 = 0\,\,\,\left( * \right)\)
Phương trình \(\left( * \right)\) có: \(\Delta = {m^2} + 4 > 0\,\,\forall m\)
\( \Rightarrow \left( * \right)\) luôn có hai nghiệm phân biệt với mọi \(m.\)
\( \Rightarrow \left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt với mọi \(m.\)
Cho parabol \(\left( P \right):\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,y = mx + 1,\) với \(m\) là tham số.
Gọi \({x_1},\,\,{x_2}\) là các hoành độ giao điểm, tìm \(m\) để \({x_2}\left( {x_1^2 - 1} \right) = 3.\)
Gọi \({x_1},\,\,{x_2}\) là các hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) \( \Rightarrow \) \({x_1},\,\,{x_2}\) là các nghiệm của phương trình \(\left( * \right)\)
\( \Rightarrow x_1^2 = m{x_1} + 1\)
Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = - 1\end{array} \right..\)
Theo đề bài ta có: \({x_2}\left( {x_1^2 - 1} \right) = 3\)
\(\begin{array}{l} \Leftrightarrow {x_2}\left( {m{x_1} + 1 - 1} \right) = 3\\ \Leftrightarrow m{x_1}{x_2} = 3\\ \Leftrightarrow - m = 3\\ \Leftrightarrow m = - 3.\end{array}\)
Vậy \(m = - 3\) thỏa mãn bài toán.