Cho hàm số \(y = f(x) = \dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 12x - 1\) có đồ thị \(\left( C \right)\). Viết phương tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \({x_0} = 0\)
Bước 1:
Với \({x_0} = 0\) ta được \({y_0} = f\left( 0 \right) = - 1\) .
Tính được: \(f'\left( 0 \right) = - 12\)
Bước 2:
Phương trình tiếp tuyến : \(y = f'\left( 0 \right)\left( {x - 0} \right) - 1\) hay \(y = - 12x - 1\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là
Phương trình tiếp tuyến của đồ thị hàm số \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).
Phương trình tiếp tuyến của đường cong \(\left( C \right):\,\,y = {x^3} - 2x + 3\) tại điểm \(M\left( {1;2} \right)\) là:
Bước 1:
\(y' = 3{x^2} - 2 \Rightarrow y'\left( 1 \right) = 1\)
Bước 2:
\( \Rightarrow \) Phương trình tiếp tuyến của đường cong tại \(M\left( {1;2} \right)\) là: \(y = 1\left( {x - 1} \right) + 2 = x + 1\)
Tiếp tuyến của đường cong \(\left( C \right):\,\,y = x\sqrt x \) tại điểm \(M\left( {1;1} \right)\) có phương trình là:
\(y = x\sqrt x = {x^{\frac{3}{2}}} \Rightarrow y' = \dfrac{3}{2}{x^{\frac{1}{2}}} = \dfrac{3}{2}\sqrt x \Rightarrow y'\left( 1 \right) = \dfrac{3}{2}\)
\( \Rightarrow \) Pttt của đường cong tại \(M\left( {1;1} \right)\) là: \(y = \dfrac{3}{2}\left( {x - 1} \right) + 1 = \dfrac{3}{2}x - \dfrac{1}{2}\)
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) tại điểm có hoành độ bằng $2$ có hệ số góc \(k = ?\)
\(y' = \dfrac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow k = y'\left( 2 \right) = - 3\)
Tiếp tuyến của đồ thị hàm số hàm số \(y = 2{x^3} + 3{x^2}\) tại điểm có tung độ bằng $5$ có phương trình là?
\(\begin{array}{l}y = 5 \Leftrightarrow 2{x^3} + 3{x^2} = 5 \Leftrightarrow x = 1 \Rightarrow \left( C \right) \cap Oy = M\left( {1;5} \right)\\y' = 6{x^2} + 6x \Rightarrow y'\left( 1 \right) = 12\end{array}\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {1;5} \right)\) là: \(y = 12\left( {x - 1} \right) + 5 = 12x - 7\)
Cho hàm số \(y = - {x^3} + 3x - 2\) có đồ thị \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình:
Xét phương trình hoành độ giao điểm $ - {x^3} + 3x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2 \Rightarrow M\left( { - 2;0} \right)\\x = 1 \Rightarrow N\left( {1;0} \right)\end{array} \right.$
\(y' = - 3{x^2} + 3\)
\(y'\left( { - 2} \right) = - 9 \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\left( { - 2;0} \right)\) là: \(y = - 9\left( {x + 2} \right) + 0 = - 9x - 18\)
\(y'\left( 1 \right) = 0 \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(N\left( {1;0} \right)\) là \(y = 0\left( {x - 1} \right) + 0 = 0\)
Viết phương trình tiếp tuyến $d$ của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm có hoành độ \({x_0}\) thỏa mãn \(f''\left( {{x_0}} \right) = 0?\)
\(\begin{array}{l}y = f\left( x \right) = {x^3} - 3{x^2} + 2\\f'\left( x \right) = 3{x^2} - 6x,f''\left( x \right) = 6x - 6 = 0 \Leftrightarrow x = 1 \Rightarrow y = 0 \Rightarrow M\left( {1;0} \right)\end{array}\)
\(y'\left( 1 \right) = - 3 \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại \(M\left( {1;0} \right)\) là \(y = - 3\left( {x - 1} \right) + 0 \Leftrightarrow 3x + y - 3 = 0\)
Tiếp tuyến tại điểm \(M\left( {1;3} \right)\) cắt đồ thị hàm số \(y = {x^3} - x + 3\) tại điểm thứ hai khác $M$ là $N$. Tọa độ điểm $N$ là:
\(y' = 3{x^2} - 1 \Rightarrow y'\left( 1 \right) = 2\)
\( \Rightarrow \) phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {1;3} \right)\) là: \(y = 2\left( {x - 1} \right) + 3 = 2x + 1\)
Xét phương trình hoành độ giao điểm
\({x^3} - x + 3 = 2x + 1 \Leftrightarrow {x^3} - 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2 \Rightarrow y = - 3 \Rightarrow N\left( { - 2; - 3} \right)\\x = 1\end{array} \right.\)
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 2}}{{x + 1}}\) tại giao điểm với trục tung cắt trục hoành tại điểm có hoành độ là?
\(x = 0 \Rightarrow y = 2 \Rightarrow \) giao điểm của đồ thị hàm số với trục tung là \(M\left( {0;2} \right)\)
\(y' = \dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y'\left( 0 \right) = - 1\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {0;2} \right)\) là \(y = - 1\left( {x - 0} \right) + 2 = - x + 2\,\,\left( d \right)\)
Vậy giao điểm của $\left( d \right)$ với trục hoành là điểm có hoành độ $x = 2$.
Cho hàm số \(y = \dfrac{{{x^2}}}{4} - x + 1\) có đồ thị \(\left( C \right)\). Từ điểm \(M\left( {2; - 1} \right)\) có thể kẻ đến \(\left( C \right)\) hai tiếp tuyến phân biệt, hai tiếp tuyến này có phương trình là?
\(y' = \dfrac{1}{2}x - 1\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(\left( {{x_0};{y_0}} \right)\) là: \(y = \left( {\dfrac{1}{2}{x_0} - 1} \right)\left( {x - {x_0}} \right) + \dfrac{{x_0^2}}{4} - {x_0} + 1\,\,\left( d \right)\)
\(\begin{array}{l}M \in \left( d \right) \Rightarrow - 1 = \left( {\dfrac{1}{2}{x_0} - 1} \right)\left( {2 - {x_0}} \right) + \dfrac{{x_0^2}}{4} - {x_0} + 1\\ \Leftrightarrow - 1 = {x_0} - \dfrac{1}{2}x_0^2 - 2 + {x_0} + \dfrac{{x_0^2}}{4} - {x_0} + 1\\ \Leftrightarrow - \dfrac{1}{4}x_0^2 + {x_0} = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left( d \right):\,\,y = - x + 1\\\left( d \right):\,\,y = x - 3\end{array} \right.\end{array}\)
Cho hàm số \(y = {x^3} - 6{x^2} + 9x\) có đồ thị \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) song song với \(d:\,y = 9x\) có phương trình là:
\(y' = 3{x^2} - 12x + 9\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\) là \(y = \left( {3x_0^2 - 12{x_0} + 9} \right)\left( {x - {x_0}} \right) + x_0^3 - 6x_0^2 + 9{x_0}\,\,\left( d \right)\)
\(d//\left( {y = 9x} \right) \Leftrightarrow y'\left( {{x_0}} \right) = 9 \Rightarrow 3x_0^2 - 12{x_0} + 9 = 9 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = 4\end{array} \right.\)
Với \({x_0} = 4 \Rightarrow \left( d \right):\,y = 9\left( {x - 4} \right) + 4 = 9x - 32\)
Với \({x_0} = 0 \Rightarrow \left( d \right):\,\,y = 9\left( {x - 0} \right) + 0 = 9x\,\,\left( {ktm} \right)\)
Gọi \(\left( C \right)\) là đồ thị hàm số \(y = {x^4} + x\). Tiếp tuyến của \(\left( C \right)\) vuông góc với \(d:\,\,x + 5y = 0\) có phương trình là:
Bước 1:
\(d:\,\,x + 5y = 0 \Leftrightarrow y = - \dfrac{1}{5}x\)
Ta có: \(y = 4{x^3} + 1 \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\) là: \(y = \left( {4x_0^3 + 1} \right)\left( {x - {x_0}} \right) + x_0^4 + {x_0}\,\,\left( \Delta \right)\)
Bước 2:
\(\Delta \bot d \Rightarrow \left( {4x_0^3 + 1} \right).\dfrac{{ - 1}}{5} = - 1 \Leftrightarrow 4x_0^3 + 1 = 5 \Leftrightarrow 4x_0^3 = 4 \Leftrightarrow {x_0} = 1\)
\( \Rightarrow \) Phương trình tiếp tuyến cần tìm là: \(y = 5\left( {x - 1} \right) + 2 = 5x - 3\)
Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
\(y' = 3{x^2} - 3\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(\left( {{x_0};{y_0}} \right) \in (C)\) là: \(y = \left( {3x_0^2 - 3} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\)
$\begin{array}{l}A \in d \Rightarrow - 6 = \left( {3x_0^2 - 3} \right)\left( {1 - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\\ \Leftrightarrow - 6 = 3x_0^2 - 3x_0^3 - 3 + 3{x_0} + x_0^3 - 3{x_0} + 1\\ \Leftrightarrow - 2x_0^3 + 3x_0^2 + 4 = 0 \Leftrightarrow {x_0} = 2\end{array}$
Vậy số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là $1$.
Số tiếp tuyến của đồ thị hàm số \(y = \dfrac{1}{3}{x^3} - 2{x^2} + 3x + 1\) song song với đường thẳng \(y = 8x + 2\) là:
Bước 1:
\(y' = {x^2} - 4x + 3\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\) là:
\(y = \left( {x_0^2 - 4{x_0} + 3} \right)\left( {x - {x_0}} \right) + \dfrac{1}{3}x_0^3 - 2x_0^2 + 3{x_0} + 1\left( d \right)\)
Bước 2:
\(\left( d \right)//\left( {y = 8x + 2} \right) \Leftrightarrow f'\left( {{x_0}} \right) = 8 \Leftrightarrow x_0^2 - 4{x_0} + 3 = 8\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = 5}\\{{x_0} = {\rm{\;}} - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left( d \right):{\mkern 1mu} {\mkern 1mu} y = 8\left( {x - 5} \right) + \dfrac{{23}}{3} = 8x - \dfrac{{97}}{3}}\\{\left( d \right):{\mkern 1mu} {\mkern 1mu} y = 8\left( {x + 1} \right) - \dfrac{{13}}{3} = 8x + \dfrac{{11}}{3}}\end{array}} \right.\)
Vậy có hai tiếp tuyến cần tìm là $2$.
Đường thẳng nào sau đây là tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) và có hệ số góc nhỏ nhất?
Ta có: \(y' = 3{x^2} - 6x = 3\left( {{x^2} - 2x + 1} \right) - 3 = 3{\left( {x - 1} \right)^2} - 3 \ge - 3\)
\( \Rightarrow y{'_{\min }} = - 3 \Leftrightarrow {x_0} = 1 \Rightarrow {y_0} = 0 \Rightarrow M\left( {1;0} \right)\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {1;0} \right)\) là \(y = - 3\left( {x - 1} \right) + 0 = - 3x + 3\)
Cho hàm số \(y = \dfrac{{a{x^2} - bx}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Để \(\left( C \right)\) đi qua điểm \(A\left( { - 1;\dfrac{5}{2}} \right)\) và tiếp tuyến của \(\left( C \right)\) tại gốc tọa độ có hệ số góc \(k = - 3\) thì mỗi liên hệ giữa $a$ và $b$ là :
\(\left( C \right)\) đi qua điểm \(A\left( { - 1;\dfrac{5}{2}} \right) \Rightarrow \dfrac{5}{2} = \dfrac{{a + b}}{{ - 3}} \Leftrightarrow a + b = - \dfrac{{15}}{2}\)
Ta có :
\(\begin{array}{l}y' = \dfrac{{\left( {2ax - b} \right)\left( {x - 2} \right) - a{x^2} + bx}}{{{{\left( {x - 2} \right)}^2}}}\\ = \dfrac{{2a{x^2} - 4ax - bx + 2b - a{x^2} + bx}}{{{{\left( {x - 2} \right)}^2}}}\\ = \dfrac{{a{x^2} - 4ax + 2b}}{{{{\left( {x - 2} \right)}^2}}}\\ \Rightarrow y'\left( 0 \right) = \dfrac{{2b}}{4} = \dfrac{b}{2} = - 3 \Leftrightarrow b = - 6\\ \Rightarrow a = - \dfrac{{15}}{2} - b = \dfrac{{ - 3}}{2} \Rightarrow 4a - b = 0\end{array}\)
Cho hàm số \(y = {x^4} - 2{m^2}{x^2} + 2m + 1\) và có đồ thị \({C_m}\). Tập tất cả các giá trị của tham số m để tiếp tuyến của đồ thị \(\left( {{C_m}} \right)\) tại giao điểm của \(\left( {{C_m}} \right)\) với đường thẳng \(d:\,\,x = 1\) song song với đường thẳng \(y = - 12x + 4\) là :
Bước 1:
Khi $x = 1$ ta có \(y = 1 - 2{m^2} + 2m + 1 = - 2{m^2} + 2m + 2 \Rightarrow \left( {{C_m}} \right) \cap d = M\left( {1; - 2{m^2} + 2m + 2} \right)\)
Ta có : \(y' = 4{x^3} - 4{m^2}x \Rightarrow y'\left( 1 \right) = 4 - 4{m^2}\)
Bước 2:
Tiếp tuyến của đồ thị hàm số tại $M$ song song với đường thẳng \(y = - 12x + 4\)
\( \Leftrightarrow y'\left( 1 \right) = - 12 \Leftrightarrow 4 - 4{m^2} = - 12 \Leftrightarrow 4{m^2} = 16 \Leftrightarrow m = \pm 2\)
Cho đồ thị hàm số $\left( C \right):\,\,y = \dfrac{{x + 1}}{{x - 2}}$ và đường thẳng \(d:\,\,y = x + m\). Khi đường thẳng cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt và tiếp tuyến với \(\left( C \right)\) tại hai điểm này song song với nhau thì $m$ sẽ thuộc khoảng nào sau đây ?
Ta có : \(y' = \dfrac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}}\)
Xét phương trình hoành độ giao điểm
$\dfrac{{x + 1}}{{x - 2}} = x + m\left( {x \ne 2} \right) $ $\Leftrightarrow x + 1 = {x^2} + mx - 2x - 2m $ $\Leftrightarrow {x^2} + \left( {m - 3} \right)x - 2m - 1 = 0\left( * \right)$
Đồ thị hàm số $\left( C \right):\,\,y = \dfrac{{x + 1}}{{x - 2}}$ và đường thẳng \(d:\,\,y = x + m\) cắt nhau tại hai điểm phân biệt $A,B$ khi và chỉ phương trình (*) có $2$ nghiệm phân biệt khác $ 2$
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = {\left( {m - 3} \right)^2} + 4\left( {2m + 1} \right) > 0\\4 + 2m - 6 - 2m - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m + 13 > 0\\ - 3 \ne 0\end{array} \right. \Rightarrow m \in \mathbb{R}\)
Giả sử phương trình (*) có $2$ nghiệm phân biệt \({x_A};{x_B}\,\,\left( {{x_A} \ne {x_B}} \right)\), theo định lí Vi-et ta có : \({x_A} + {x_B} = 3 - m\)
Tiếp tuyến của đồ thị hàm số \(\left( C \right)\) tại $A$ và $B$ song song với nhau \( \Leftrightarrow y'\left( {{x_A}} \right) = y'\left( {{x_B}} \right)\)
Ta có : \(y' = \dfrac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}}\)
\(\begin{array}{l}y'\left( {{x_A}} \right) = y'\left( {{x_B}} \right) \Leftrightarrow \dfrac{{ - 3}}{{{{\left( {{x_A} - 2} \right)}^2}}} = \dfrac{{ - 3}}{{{{\left( {{x_B} - 2} \right)}^2}}} \Leftrightarrow {x_A} - 2 = 2 - {x_B} \Leftrightarrow {x_A} + {x_B} = 4\\ \Leftrightarrow 3 - m = 4 \Leftrightarrow m = - 1 \in \left( { - 2;0} \right)\end{array}\)
Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị \(\left( C \right)\). Gọi d là tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1;5} \right)\) và $B$ là giao điểm thứ hai của $d$ với \(\left( C \right)\). Tính diện tích tam giác $OAB$?
\(y' = 3{x^2} + 6x \Rightarrow y'\left( 1 \right) = 9\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1;5} \right)\) là
\(y = 9\left( {x - 1} \right) + 5 = 9x - 4 \Leftrightarrow 9x - y - 4 = 0\,\,\left( d \right)\)
Xét phương trình hoành độ giao điểm \({x^3} + 3{x^2} + 1 = 9x - 4 \Leftrightarrow \left[ \begin{array}{l}x = - 5 \Rightarrow y = - 49\\x = 1 \Rightarrow y = 5\end{array} \right. \Rightarrow B\left( { - 5; - 49} \right)\)
\(\begin{array}{l} \Rightarrow AB = \sqrt {{{\left( { - 5 - 1} \right)}^2} + {{\left( { - 49 - 5} \right)}^2}} = 6\sqrt {82} \\d\left( {O;AB} \right) = d\left( {O;d} \right) = \dfrac{{\left| { - 4} \right|}}{{\sqrt {{9^2} + {1^2}} }} = \dfrac{4}{{\sqrt {82} }}\\ \Rightarrow {S_{\Delta OAB}} = \dfrac{1}{2}d\left( {O;d} \right).AB = \dfrac{1}{2}.\dfrac{4}{{\sqrt {82} }}.6\sqrt {82} = 12\end{array}\)