Chọn khẳng định đúng.
+) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy.
+) Trong một đường tròn, đường kính đi qua trung điểm của một dây ( không đi qua tâm ) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.
+) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.
Cho tam giác $ABC$ cân tại $A$ và $\widehat A = 66^\circ $ nội tiếp đường tròn $\left( O \right)$. Trong các cung nhỏ $AB;BC;AC$, cung nào là cung lớn nhất?
Vì tam giác $ABC$ cân tại $A$ có $\widehat A = 66^\circ \Rightarrow \widehat B = \widehat C = \dfrac{{180^\circ - \widehat A}}{2} = \dfrac{{180^\circ - 66^\circ }}{2} = 57^\circ $
Vì $\widehat A > \widehat B = \widehat C$ nên theo mối liên hệ giữa cạnh và góc trong tam giác ta có $BC > AB = AC$
Theo mối liên hệ giữa cung và dây ta có $\overparen{BC}$ $ > $ $\overparen{AB}$ $ = $ $\overparen{AC}$.
Cho đường tròn $\left( {O;R} \right)$ và hai dây $AB;CD$ sao cho $\widehat {AOB} = 120^\circ ;\widehat {COD} = 60^\circ $. So sánh các dây $CD;AB$.
Vì $\widehat {COD} < \widehat {AOB}$ nên cung $CD$ nhỏ hơn cung $AB$, từ đó dây $CD < AB$ (*)
Xét tam giác $OCD$ cân tại $O$ có $\widehat {COD} = 60^\circ $ nên $\Delta COD$ là tam giác đều $ \Rightarrow CD = R$
$AB$ là dây không đi qua tâm nên $AB < 2R \Rightarrow AB < 2CD$ (**)
Từ (*) và (**) ta có $CD < AB < 2CD$
Cho tam giác $ABC$ có $\widehat B = 60^\circ $, đường trung tuyến $AM$, đường cao $CH$. Vẽ đường tròn ngoại tiếp $BHM$. Kết luận nào đúng khi nói về các cung $HB;MB;MH$ của đường tròn ngoại tiếp tam giác $MHB$ ?
Vì trong một đường tròn hai cung bằng nhau căng hai dây bằng nhau nên ta đi so sánh các đoạn thẳng $HB;MB;MH$.
Xét tam giác $BCH$ vuông tại $H$ có $\cos B = \dfrac{{HB}}{{BC}} \Leftrightarrow \dfrac{{HB}}{{BC}} = \cos 60^\circ = \dfrac{1}{2} \Rightarrow HB = \dfrac{{BC}}{2} = BM = CM$
Xét tam giác $HBM$ có $BM = BH$ (cmt) và $\widehat {ABC} = 60^\circ $ nên $\Delta HBM$ là tam giác đều
$ \Rightarrow BM = BH = HM$
Suy ra ba cung $HB;MB;MH$ bằng nhau.
Cho đường tròn $\left( {O;R} \right)$, dây cung $AB = R\sqrt 3 $. Vẽ đường kính $CD \bot AB$ ($C$ thuộc cung lớn $AB$). Trên cung $AC$ nhỏ lấy điểm $M$, vẽ dây $AN{\rm{//}}CM$. Độ dài đoạn $MN$ là
Vì hai dây $MC{\rm{//}}AN$ nên hai cung $AM$ và cung $CN$ bằng nhau, hay $AM = CN$
Suy ra $MCNA$ là hình thang cân $ \Rightarrow MN = AC$.
Gọi $H$ là giao của $CD$ và $AB$. Khi đó vì $AB \bot CD$ tại $H$ nên $H$ là trung điểm của $AB \Rightarrow AH = \dfrac{{AB}}{2} = \dfrac{{R\sqrt 3 }}{2}$
Xét tam giác vuông $AHO$, theo định lý Pytago ta có $OH = \sqrt {A{O^2} - A{H^2}} = \dfrac{R}{2}$$ \Rightarrow CH = \dfrac{{3R}}{2}$
Theo định lý Pytago cho tam giác $ACH$ vuông ta có $AC = \sqrt {C{H^2} + A{H^2}} = R\sqrt 3 $
Vậy $MN = R\sqrt 3 $.
Cho đường tròn $(O;R)$ có hai dây cung $AB$ và $CD$ vuông góc với nhau tại $I$ ( $C$ thuộc cung nhỏ $AB$ ). Kẻ đường kính $BE$ của $(O)$. Đẳng thức nào sau đây là đúng?
Xét $\left( O \right)$ có $BE$ là đường kính và $A \in \left( O \right)$$ \Rightarrow AE \bot AB$ mà $CD \bot AB$$ \Rightarrow AE{\rm{//}}CD$
Nên cung $AC$ bằng cung $ED$ hay $AC = ED.$
Xét các tam giác vuông $\Delta IAC$ và $\Delta IBD$ ta có
$I{A^2} + I{C^2} = A{C^2};$
$I{B^2} + I{D^2} = B{D^2} $
$\Rightarrow I{A^2} + I{C^2} + I{B^2} + I{D^2} $
$= A{C^2} + B{D^2} $
$= E{D^2} + B{D^2}$
Mà $\Delta BED$ vuông tại $D$ nên $E{D^2} + B{D^2} = E{B^2} = {\left( {2R} \right)^2} = 4{R^2}$
Vậy $I{A^2} + I{C^2} + I{B^2} + I{D^2} = 4{R^2}$.
Cho đường tròn $(O)$ đường kính $AB$ và đường tròn $(O')$ đường kính $AO$. Các điểm $C,D$ thuộc đường tròn $(O)$ sao cho $B \in $ cung $CD$ và cung $BC$ nhỏ hơn cung $BD$. Các dây cung $AC$ và $AD$ cắt đường tròn $(O')$ theo thứ tự $E$ và $F$.
So sánh dây $OE$ và $OF$ của đường tròn $(O')$.
Xét $\left( {O'} \right)$ có $OA$ là đường kính và $E \in \left( {O'} \right)$ nên $OE \bot AC$
Tương tự với $\left( O \right)$ ta có $BC \bot AC$ nên $OE{\rm{//}}BC$ mà $O$ là trung điểm của $AB$
$ \Rightarrow $ $E$ là trung điểm của $AC$
$ \Rightarrow $ $OE = \dfrac{1}{2}BC.$
Tương tự $OF = \dfrac{1}{2}DB$ mà cung $BC$ nhỏ hơn cung $BD$ nên
$BC < BD \Rightarrow OE < OF$ .
Cho đường tròn $(O)$ đường kính $AB$ và đường tròn $(O')$ đường kính $AO$. Các điểm $C,D$ thuộc đường tròn $(O)$ sao cho $B \in $ cung $CD$ và cung $BC$ nhỏ hơn cung $BD$. Các dây cung $AC$ và $AD$ cắt đường tròn $(O')$ theo thứ tự $E$ và $F$.
So sánh dây $AE$ và $AF$ của đường tròn $(O')$.
Theo định lý Pytago ta có : $A{E^2} = A{O^2} - O{E^2}$ và $A{F^2} = A{O^2} - O{F^2}$ mà $OE < OF$
$ \Rightarrow A{E^2} > A{F^2} \Rightarrow AE > AF$.