Trong dao động điều hòa của một vật thì tập hợp 2 đại lượng nào sau đây là không đổi theo thời gian?
$x = Ac{\text{os(}}\omega {\text{t + }}\varphi {\text{)}}$
$A$: biên độ dao động
Tần số $f$: Là số dao động toàn phần thực hiện được trong một giây.
Vận tốc: $v = x' = - \omega A\sin (\omega t + \varphi ) = \omega Acos(\omega t + \varphi + \frac{\pi }{2})$
Gia tốc: $a = v' = - {\omega ^2}A\cos (\omega t + \varphi ) = - {\omega ^2}x = {\omega ^2}A\cos (\omega t + \varphi + \pi )$
Ta nhận thấy li độ $x$, vận tốc, gia tốc luôn biến đổi
$A, f$ không đổi
Pha của dao động được dùng để xác định
\(\left( {\omega t + \varphi } \right)\) - Pha của dao động cho biết trạng thái dao động (gồm li độ \(x\) và chiều chuyển động \(\overrightarrow v \) )
Pha ban đầu của dao động điều hòa phụ thuộc
Pha ban đầu là pha của dao động tại $t=0$
=> Pha ban đầu của dao động điều hòa phụ thuộc vào cách chọn gốc tọa độ và gốc thời gian
Một vật dao động điều hoà dọc theo trục Ox với phương trình: \(x{\text{ }} = {\text{ }}Acos(\pi t){\text{ }}cm\). Nếu chọn gốc toạ độ O tại vị trí cân bằng của vật thì gốc thời gian $t = 0$ là lúc vật:
Phương trình dao động của vật: \(x = Acos\left( {\pi t} \right)\)
Tại thời điểm ban đầu \(t = 0\), ta có: \(x = Acos\left( {\pi .0} \right) = Acos0 = A\)
=> Lúc \(t = 0\) vật ở vị trí li độ cực đại thuộc phần dương của trục Ox
Một con lắc lò xo dao động với phương trình $x = 6c{\text{os}}\left( {20\pi t } \right)cm$. Xác định chu kỳ, tần số dao động của chất điểm.
Ta có: $\omega = \frac{{2\pi }}{T} = 2\pi f \to \left\{ \begin{gathered}T = \frac{{2\pi }}{\omega } \hfill \\f = \frac{\omega }{{2\pi }} \hfill \\\end{gathered} \right.$
Từ phương trình, ta có: $ω=20π$, thay vào công thức trên => $\left\{ \begin{gathered}T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{20\pi }} = 0,1{\text{s}} \hfill \\f = \frac{\omega }{{2\pi }} = \frac{1}{T} = 10H{\text{z}} \hfill \\\end{gathered} \right.$
Một chất điểm dao động điều hoà với phương trình dạng \(x = 5cos(7\pi t{\rm{ }} + \dfrac{{7\pi }}{6})cm\). Biểu thức vận tốc tức thời của chất điểm là:
Ta có:
$v = x' = - \omega Asin(\omega t + \varphi ) = \omega Acos(\omega t + \varphi + \frac{\pi }{2})$
$\begin{array}{l}x = 5cos(7\pi t + \dfrac{{7\pi }}{6})cm\\\to v = x' = - 7\pi .5sin(7\pi t + \dfrac{{7\pi }}{6})\\ = 35\pi cos(7\pi t + \dfrac{{7\pi }}{6} + \frac{\pi }{2})\\ = 35\pi cos(7\pi t + \dfrac{{5\pi }}{3})cm/s\end{array}$
Một vật đang dao động điều hoà, khi vật chuyển động từ vị trí biên về vị trí cân bằng thì
Khi vật chuyển động từ vị trí biên về vị trí cân bằng, ta có:
+ vận tốc tăng
+ li độ giảm
=> Vật chuyển động nhanh dần, gia tốc có độ lớn giảm dần
Mặt khác: gia tốc luôn hướng về vị trí cân bằng
Một vật dao động điều hoà chu kỳ T. Gọi \({v_{max}}\) và \({a_{max}}\) tuơng ứng là vận tốc cực đại và gia tốc cực đại của vật. Hệ thức liên hệ sai giữa \({v_{max}}\) và \({a_{max}}\) là:
Ta có: $\left\{ \begin{gathered}{v_{{\text{max}}}} = \omega A \hfill \\{a_{{\text{max}}}} = {\omega ^2}A \hfill \\\end{gathered} \right. \to \left[ \begin{gathered}\frac{{{a_{{\text{max}}}}}}{{{v_{{\text{max}}}}}} = \frac{{{\omega ^2}A}}{{\omega A}} = \omega = \frac{{2\pi }}{T} \hfill \\\frac{{{a_{{\text{max}}}}}}{{{v^2}_{{\text{max}}}}} = \frac{{{\omega ^2}A}}{{{{(\omega A)}^2}}} = \frac{1}{A} \hfill \\\frac{{{a^2}_{{\text{max}}}}}{{{v_{{\text{max}}}}}} = \frac{{{{({\omega ^2}A)}^2}}}{{\omega A}} = {\omega ^3}A \hfill \\\end{gathered} \right.$
Một đĩa phẳng nhẵn nằm ngang, chuyển động tròn đều với vận tốc góc \(\omega \) quanh trục thẳng đúng đi qua tâm của đĩa. Trên đĩa có một thanh mảnh đồng chất AB có thể quay tự do quanh trục được gắn chặt với đĩa và đi qua đầu A của thanh. Khi thanh AB đang ở vị trí như hình vẽ, tác động nhẹ vào đầu B của thanh để thanh AB quay với vận tốc góc ban đầu \({\omega _0}\) so với đĩa (\({\omega _0}\)khá nhỏ so với \(\omega \)). Người ta quan sát đứng trên đĩa sẽ thấy thanh chuyển động như thế nào?
Người quan sát đứng trên đĩa nên xem như hệ quy chiếu gắn với đĩa.
Khi đó thanh chịu lực quán tính li tâm \(F = {m_{AB}}.{\omega ^2}r\) có tác dụng kéo thanh trở về vị trí cân bằng.
Tại thời điểm t thì tích của li độ và vận tốc của vật dao động điều hòa âm (x.v < 0), khi đó
Ta có: x.v < 0, có thể xảy ra 2 TH
+ x > 0,v < 0 : Vật đi từ A => 0: Vật đang chuyển động danh dần theo chiều âm
+ x < 0, v > 0: Vật đi từ -A=> 0: Vật đang chuyển động nhanh dần theo chiều dương
=> x.v <0: Vật đang chuyển động nhanh dần về vị trí cân bằng
Một vật dao động điều hòa có biên độ là \(2{\rm{ }}\left( {cm} \right)\) và tần số góc \(\omega = 2\pi \left( {rad} \right)\) . Lấy \({\pi ^2} = 10\), gia tốc của vật tại thời điểm vật có vận tốc \(v = 2\sqrt 3 \pi cm/s\) là:
Ta có: ${A^2} = {\frac{a}{{{\omega ^4}}}^2} + \frac{{{v^2}}}{{{\omega ^2}}}$
Thay \(A = 2cm,\omega = 2\pi \left( {rad} \right)\) , \(v = 2\sqrt 3 \pi cm/s\) vào hệ thức trên ta được:
\(a = \pm {\omega ^2}\sqrt {{A^2} - \frac{{{v^2}}}{{{\omega ^2}}}} = \pm {\left( {2\pi } \right)^2}\sqrt {{2^2} - \frac{{{{\left( {2\sqrt 3 \pi } \right)}^2}}}{{{{\left( {2\pi } \right)}^2}}}} = \pm 4{\pi ^2}cm/{s^2} = \pm 40cm/{s^2}\)
Chọn phát biểu sai về quan hệ giữa chuyển động tròn đều và dao động điều hoà là hình chiếu của nó.
DĐĐH được xem là hình chiếu của một chất điểm chuyển động tròn đều lên một trục nằm trong mặt phẳng quỹ đạo. Với: \(A = R;\omega = \frac{v}{R}\)
Vật có đồ thị li độ dao động như hình vẽ. Biên độ và chu kì của vật là:
Từ đồ thị, ta có:
$\begin{gathered}A = 2cm \hfill \\T = 0,4{\text{s}} \hfill \\\end{gathered} $
Một chất điểm dao động điều hoà với phương trình dạng\(x=cos(2\pi t + \dfrac{\pi}{6})(cm,s)\). Lấy \(\pi ^2 =10\), biểu thức gia tốc tức thời của chất điểm là:
Ta có: $a = - {\omega ^2}Acos(\omega t + \varphi ) = {\omega ^2}Acos(\omega t + \varphi + \pi )$
x = cos(2πt + π/6) (cm, s) $ \to a = - {(2\pi )^2}.1cos(2\pi t + \dfrac{\pi }{6}) = - 40cos(2\pi t + \dfrac{\pi }{6})$
Vật có đồ thị dao động như hình vẽ. Vận tốc cực đại có giá trị
Ta có:
$\begin{gathered}A = 6cm \hfill \\2T = 0,4{\text{s}} \to T = 0,2{\text{s}} \to \omega {\text{ = }}\frac{{2\pi }}{T} = 10\pi ra{\text{d}}/s \hfill \\\end{gathered} $
$ \to {v_{{\text{max}}}} = A\omega = 60\pi cm/s$
Một vật thực hiện dao động điều hòa trên đoạn thẳng dài 12cm. Thời gian để vật đi được đoạn đường dài 24cm là 2s. Tốc độ của vật khi đi qua vị trí cân bằng là
Ta có: \(A = \dfrac{L}{2} = \dfrac{{12}}{2} = 6cm\)
Vật đi được quãng đường \(S = 24cm = 4.A\) trong 2s \( \Rightarrow T = 2s\)
→ Tốc độ của vật khi qua vị trí cân bằng \({v_{ma{\rm{x}}}} = \omega A = 6\pi \,\,\left( {cm/s} \right)\)
Vật dao động điều hòa có đồ thị vận tốc - thời gian như hình vẽ. Tần số góc và pha ban đầu của li độ của vật là:
Ta có:
$\left\{ \begin{gathered}A\omega = 10\pi cm/s \hfill \\\dfrac{{5T}}{{12}} = 0,1{\text{s}} \to T = 0,24{\text{s}} \to \omega = \dfrac{{25\pi }}{3}ra{\text{d}}/s \hfill \\\end{gathered} \right.$
Tại \(t = 0\): \(\left\{ \begin{array}{l}v = 5\pi \\v > 0\end{array} \right. \leftrightarrow \left\{ \begin{array}{l} - A\omega \sin \varphi {\rm{ = 5}}\pi \\{\rm{sin}}\varphi < 0\end{array} \right. \leftrightarrow \left\{ \begin{array}{l}\sin \varphi {\rm{ = }}\dfrac{{{\rm{ - 5}}\pi }}{{10\pi }} = \dfrac{{{\rm{ - 1}}}}{2}\\{\rm{sin}}\varphi < 0\end{array} \right. \to \varphi = \left[ \begin{array}{l} - \dfrac{\pi }{6}\\\dfrac{{7\pi }}{6}\end{array} \right.\)
Mặt khác, vận tốc đang tăng => \(\varphi = \dfrac{{7\pi }}{6}\)
Một vật dao động điều hòa có đồ thị biểu diễn li độ x theo thời gian t như hình bên. Chu kì dao động của vật là
Từ đồ thị ta thấy trong khoảng thời gian từ 10 ms đến 60 ms, vật thực hiện được \(\frac{1}{2}\) chu kì:
\(\frac{T}{2} = 60 - 10 \Rightarrow T = 100\,\,\left( {ms} \right) = 0,1\,\,\left( s \right)\)