Cho đường thẳng \(d:y = mx + m - 1\). Tìm \(m\) để d cắt \(Ox\) tại \(A\) và cắt \(Oy\) tại \(B\) sao cho tam giác \(AOB\) vuông cân.
\(\begin{array}{l}d \cap Oy = \left\{ B \right\}\\x_B = 0 \Rightarrow y_B = m - 1\\ \Rightarrow B(0;m - 1) \Rightarrow OB = |m - 1|\\d \cap {\rm{Ox}} = \left\{ A \right\}\\y_A = 0 \Leftrightarrow mx_A + m - 1 = 0 \Leftrightarrow x_A = \dfrac{{1 - m}}{m}(m \ne 0)\\ \Rightarrow A\left( {\dfrac{{1 - m}}{m};0} \right) \Rightarrow OA = \left| {\dfrac{{1 - m}}{m}} \right|\end{array}\)
Tam giác OAB vuông cân tại O
\(\begin{array}{l} \Leftrightarrow OA = OB \Leftrightarrow |m - 1| = \left| {\dfrac{{1 - m}}{m}} \right|\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = \dfrac{{1 - m}}{m}\\m - 1 = \dfrac{{m - 1}}{m}\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}{m^2} = 1\\(m - 1)\left( {1 - \dfrac{1}{m}} \right) = 0\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}m = \pm 1\\\dfrac{{{{\left( {m - 1} \right)}^2}}}{m} = 0\end{array} \right. \\\Leftrightarrow m = \pm 1\end{array}\)
Cho đường thẳng \(\left( {{d_1}} \right):\,\,y = ax + b\) song song với đường thẳng \(\left( {{d_2}} \right):\,\,\,y = 2x + 2019\) và cắt trục tung tại điểm \(A\left( {0; - 2} \right).\) Giá trị của biểu thức \({a^2} + {b^3}\) bằng:
Theo đề bài ta có:\({d_1}//{d_2} \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 2019\end{array} \right. \Rightarrow {d_1}:\,\,\,y = 2x + b.\)
\({d_1}\) cắt trục tung tại \(A\left( {0; - 2} \right) \Rightarrow - 2 = 2.0 + b \Leftrightarrow b = - 2\,\,\left( {tm} \right)\)
\( \Rightarrow {a^2} + {b^3} = {2^2} + {\left( { - 2} \right)^3} = 4 - 8 = - 4.\)
Cho hàm số bậc nhất \(y = ax - 4\). Xác định hệ số \(a\), biết đồ thị hàm số đã cho cắt đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) tại điểm có tung độ bằng \(5\).
Hệ số a=
Hệ số a=
Thay \(y = 5\) vào phương trình đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) ta có \(5 = - 3x + 2 \Leftrightarrow 3x = - 3 \Leftrightarrow x = - 1\).
Do đó đồ thị hàm số \(y = ax - 4\) cắt đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) tại điểm \(A\left( { - 1;5} \right)\).
Thay \(x = - 1,\,\,y = 5\) vào hàm số \(y = ax - 4\) ta có \(5 = - a - 4 \Leftrightarrow a = - 5 - 4 = - 9\).
Vậy \(a = - 9\).