Cho hàm số bậc nhất \(y = ax - 4\). Xác định hệ số \(a\), biết đồ thị hàm số đã cho cắt đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) tại điểm có tung độ bằng \(5\).
Hệ số a=
Trả lời bởi giáo viên
Hệ số a=
Thay \(y = 5\) vào phương trình đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) ta có \(5 = - 3x + 2 \Leftrightarrow 3x = - 3 \Leftrightarrow x = - 1\).
Do đó đồ thị hàm số \(y = ax - 4\) cắt đường thẳng \(\left( d \right):\,\,y = - 3x + 2\) tại điểm \(A\left( { - 1;5} \right)\).
Thay \(x = - 1,\,\,y = 5\) vào hàm số \(y = ax - 4\) ta có \(5 = - a - 4 \Leftrightarrow a = - 5 - 4 = - 9\).
Vậy \(a = - 9\).
Hướng dẫn giải:
Thay \(y = 5\) vào phương trình đường thẳng \(\left( d \right):\,\,y = - 3x + 2\), từ đó tính được \(x\)
Thay \(y = 5\) và giá trị \(x\) vừa tìm được vào hàm số \(y = ax - 4\) từ đó tìm được hệ số \(a\)