Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$
Bước 1:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {ax + 1} - 1}}{x} \\= \mathop {\lim }\limits_{x \to 0} \dfrac{{ax + 1 - 1}}{{x\left( {\sqrt {ax + 1} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{a}{{\sqrt {ax + 1} + 1}}\\ = \dfrac{a}{{\sqrt {a.0 + 1} + 1}} = \dfrac{a}{2}\\f\left( 0 \right) = 5b\end{array}\)
Bước 2:
Để hàm số liên tục tại $x = 0$ thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow \dfrac{a}{2} = 5b \Leftrightarrow a = 10b\)
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\sqrt {2x - 4} + 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\\\dfrac{{x + 1}}{{{x^2} - 2mx + 3m + 2}}\,\,khi\,\,x < 2\end{array} \right.\)
Tìm tất cả các giá trị của tham số $m$ để hàm số liên tục trên $R.$
Ta có hàm số liên tục trên \(\left( {2; + \infty } \right)\)
Ta có \(f\left( 2 \right) = \sqrt {2.2 - 4} + 3 = 3;\,\,\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {\sqrt {2x - 4} + 3} \right) = 3\)
Hàm số liên tục trên \(\mathbb{R} \Leftrightarrow \) Hàm số liên tục trên \(\left( { - \infty ;2} \right)\) và liên tục tại \(x = 2\)
\( \Leftrightarrow \) Hàm số xác định trên \(\left( { - \infty ;2} \right)\) và liên tục tại \(x = 2\)
\( \Leftrightarrow \)\(\left\{ \begin{array}{l}{x^2} - 2mx + 3m + 2 \ne 0\forall x \in \left( { - \infty ;2} \right){\rm{ (1)}}\\\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right){\rm{ (2)}}\end{array} \right.\)
\(\begin{array}{l}(2) \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ - }} = 3 \Leftrightarrow \dfrac{{2 + 1}}{{{2^2} - 2m.2 + 3m + 2}} = 3\\ \Leftrightarrow \dfrac{3}{{6 - m}} = 3 \Leftrightarrow m = 5\end{array}\)
Thay \(m = 5\) vào \((1)\) ta được \({x^2} - 10x + 17 \ne 0\forall x \in \left( { - \infty ;2} \right)\).
Vậy với $m = 5$ thì hàm số liên tục trên \(\mathbb{R}\).
Cho hàm số \(f\left( x \right)\) xác định trên $[a; b].$ Trong các khẳng định sau, khẳng định nào đúng?
Đáp án A sai. Chẳng hạn xét hàm số \(f\left( x \right) = {x^2} - 5.\) Hàm số này xác định trên \(\left[ { - 3;3} \right]\) và liên tục trên đoạn đó, đồng thời \(f\left( { - 3} \right).f\left( 3 \right) = 16 > 0\) nhưng phương trình \(f\left( x \right) = {x^2} - 5 = 0\) có nghiệm $x = \pm \sqrt 5 \in \left( { - 3;3} \right)$
Đáp án B sai vì thiếu điều kiện \(f\left( x \right)\) liên tục trên \(\left( {a;b} \right)\).
Đáp án C sai. Ví dụ xét hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\,\,\,khi\,\,x < 0\\x + 2\,\,khi\,\,x \ge 0\end{array} \right.\). Hàm số này xác định trên \(\left[ { - 3;3} \right]\), có nghiệm \(x = - 1\) thuộc khoảng \(\left( { - 3;3} \right)\) nhưng gián đoạn tại điểm \(x = 0 \in \left( { - 3;3} \right)\) nên không liên tục trên khoảng \(\left( { - 3;3} \right)\) .
Đáp án D đúng. Thật vậy:
+ Vì hàm số \(y = f\left( x \right)\) liên tục tăng trên đoạn \(\left[ {a;b} \right]\) nên \(f\left( a \right) < f\left( x \right) < f\left( b \right)\,\,\forall x \in \left( {a;b} \right)\)
TH1: \(\left\{ \begin{array}{l}f\left( a \right) > 0\\f\left( b \right) > 0\\f\left( a \right) < f\left( x \right) < f\left( b \right)\end{array} \right. \Rightarrow f\left( x \right) > 0\)
TH2: \(\left\{ \begin{array}{l}f\left( a \right) < 0\\f\left( b \right) < 0\\f\left( a \right) < f\left( x \right) < f\left( b \right)\end{array} \right. \Rightarrow f\left( x \right) < 0\)
Vậy không có giá trị nào của $x$ để \(f\left( x \right) = 0\), hay phương trình \(f\left( x \right) = 0\) không thể có nghiệm trong \(\left( {a;b} \right)\).
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\sin x\,\,\,\,\,\,\,khi\,\,\left| x \right| \le \dfrac{\pi }{2}\\ax + b\,\,\,\,khi\,\,\left| x \right| > \dfrac{\pi }{2}\end{array} \right.\) liên tục trên $R.$ Khi đó giá trị của $a$ và $b$ là:
\(f\left( x \right) = \left\{ \begin{array}{l}\sin x\,\,\,\,\,\,\,khi\,\,\left| x \right| \le \dfrac{\pi }{2}\\ax + b\,\,\,\,khi\,\,\left| x \right| > \dfrac{\pi }{2}\end{array} \right. \) \(\Leftrightarrow f\left( x \right) = \left\{ \begin{array}{l}\sin x\,\,\,\,\,\,\,khi\,\, - \dfrac{\pi }{2} \le x \le \dfrac{\pi }{2}\\ax + b\,\,\,\,khi\,\,\left[ \begin{array}{l}x > \dfrac{\pi }{2}\\x < - \dfrac{\pi }{2}\end{array} \right.\end{array} \right.\)
Ta có hàm số liên tục trên các khoảng \(\left( { - \infty ; - \dfrac{\pi }{2}} \right) \cup \left( { - \dfrac{\pi }{2};\dfrac{\pi }{2}} \right) \cup \left( {\dfrac{\pi }{2}; + \infty } \right)\)
Để hàm số liên tục trên $R$ thì hàm số phải liên tục tại các điểm \(x = \pm \dfrac{\pi }{2} \)
\(\Rightarrow \left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to \frac{\pi }{2}} f\left( x \right) = f\left( {\dfrac{\pi }{2}} \right)\\\mathop {\lim }\limits_{x \to - \frac{\pi }{2}} f\left( x \right) = f\left( { - \dfrac{\pi }{2}} \right)\end{array} \right.\)
Ta có
\(\begin{array}{l}\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \left( {ax + b} \right) = a.\dfrac{\pi }{2} + b\\\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} \left( {\sin x} \right) = \sin \dfrac{\pi }{2} = 1\\f\left( {\dfrac{\pi }{2}} \right) = \sin \dfrac{\pi }{2} = 1\end{array} \right\} \Rightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} f\left( x \right) = f\left( {\dfrac{\pi }{2}} \right) \Leftrightarrow a.\dfrac{\pi }{2} + b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - \frac{\pi }{2}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - \frac{\pi }{2}} \right)}^ + }} \left( {\sin x} \right) = - 1\\\mathop {\lim }\limits_{x \to {{\left( { - \frac{\pi }{2}} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - \frac{\pi }{2}} \right)}^ - }} \left( {ax + b} \right) = - a.\dfrac{\pi }{2} + b\\f\left( { - \dfrac{\pi }{2}} \right) = \sin \dfrac{{ - \pi }}{2} = - 1\end{array} \right\} \Rightarrow \mathop {\lim }\limits_{x \to {{\left( { - \frac{\pi }{2}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - \frac{\pi }{2}} \right)}^ - }} f\left( x \right) = f\left( { - \dfrac{\pi }{2}} \right) \Leftrightarrow - a.\frac{\pi }{2} + b = - 1\,\,\,\,\,\,\left( 2 \right)\end{array}\)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}a.\dfrac{\pi }{2} + b = 1\\ - a.\dfrac{\pi }{2} + b = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{2}{\pi }\\b = 0\end{array} \right.\)
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;4} \right]\) sao cho \(f\left( { - 1} \right) = 2\), \(f\left( 4 \right) = 7\). Có thể nói gì về số nghiệm của phương trình \(f\left( x \right) = 5\) trên đoạn \([ - 1;4]\):
Ta có \(f\left( x \right) = 5 \Leftrightarrow f\left( x \right) - 5 = 0\). Đặt \(g\left( x \right) = f\left( x \right) - 5.\) Khi đó
\(\left\{ \begin{array}{l}g\left( { - 1} \right) = f\left( { - 1} \right) - 5 = 2 - 5 = - 3\\g\left( 4 \right) = f\left( 4 \right) - 5 = 7 - 5 = 2\end{array} \right. \Rightarrow g\left( { - 1} \right)g\left( 4 \right) < 0.\)
Vậy phương trình \(g\left( x \right) = 0\) có ít nhất một nghiệm thuộc khoảng \(\left( {1;4} \right)\) hay phương trình \(f\left( x \right) = 5\) có ít nhất một nghiệm thuộc khoảng \(\left( {1;4} \right)\).
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {x + 6} - a}}{{\sqrt {x + 1} - 2}}\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ne 3\\{x^3} - \left( {2b + 1} \right)x\,\,\,\,khi\,\,x = 3\end{array} \right.\) trong đó $a, b$ là các tham số thực. Biết hàm số liên tục tại $x = 3$. Số nhỏ hơn trong hai số $a$ và $b$ là:
\(f\left( 3 \right) = 27 - 3\left( {2b + 1} \right)\)
Đặt \(g\left( x \right) = \sqrt {x + 6} - a\).
Ta có \(g\left( 3 \right) = 3 - a\)
Nếu \(a = 3\) thì $\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \dfrac{{\sqrt {x + 6} - 3}}{{\sqrt {x + 1} - 2}} = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {x - 3} \right)\left( {\sqrt {x + 1} + 2} \right)}}{{\left( {x - 3} \right)\left( {\sqrt {x + 6} + 3} \right)}} = \dfrac{4}{6} = \dfrac{2}{3}$
Để hàm số liên tục tại $x = 3$ \( \Leftrightarrow \mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Leftrightarrow 27 - 3\left( {2b + 1} \right) = \dfrac{2}{3} \Leftrightarrow b = \dfrac{{35}}{9}\)
Nếu \(a \ne 3 \Leftrightarrow g\left( 3 \right) \ne 0 \Rightarrow \mathop {\lim }\limits_{x \to 3} \dfrac{{g\left( x \right)}}{{\sqrt {x + 1} - 2}} = \infty \Rightarrow \)Hàm số không thể liên tục tại $x = 3.$
Vậy \(a = 3,b = \dfrac{{35}}{9}\)
Cho hàm số \(f(x) = {x^3} - 3x - 1\). Số nghiệm của phương trình \(f\left( x \right) = 0\) trên \(\mathbb{R}\) là:
Hàm số \(f\left( x \right) = {x^3} - 3x - 1\) là hàm đa thức có tập xác định là \(\mathbb{R}\) nên liên tục trên \(\mathbb{R}\). Do đó hàm số liên tục trên mỗi khoảng \(\left( { - 2; - 1} \right),{\rm{ }}\left( { - 1;0} \right),{\rm{ }}\left( {0;2} \right).\)
Ta có
\( \bullet \) \(\left\{ \begin{array}{l}f\left( { - 2} \right) = - 3\\f\left( { - 1} \right) = 1\end{array} \right. \Rightarrow f\left( { - 2} \right)f\left( { - 1} \right) < 0\) \( \Rightarrow \left( 1 \right)\) có ít nhất một nghiệm thuộc \(\left( { - 2; - 1} \right).\)
\( \bullet \) \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 1\\f\left( 0 \right) = - 1\end{array} \right. \Rightarrow f\left( { - 1} \right)f\left( 0 \right) < 0\) \( \Rightarrow \left( 1 \right)\) có ít nhất một nghiệm thuộc \(\left( { - 1;0} \right).\)
\( \bullet \) \(\left\{ \begin{array}{l}f\left( 2 \right) = 1\\f\left( 0 \right) = - 1\end{array} \right. \Rightarrow f\left( 2 \right)f\left( 0 \right) < 0\) \( \Rightarrow \left( 1 \right)\) có ít nhất một nghiệm thuộc \(\left( {0;2} \right).\)
Như vậy phương trình \(\left( 1 \right)\) có ít nhất ba nghiệm thuộc khoảng \(\left( { - 2;2} \right)\).
Tuy nhiên phương trình \(f\left( x \right) = 0\) là phương trình bậc ba có nhiều nhất ba nghiệm.
Vậy phương trình \(f\left( x \right) = 0\) có đúng \(3\) nghiệm trên \(\mathbb{R}.\)
Giá trị thực của tham số \(m\) để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{{x^2} - 1}&{{\rm{ khi }}x > 2}\\{m + 1}&{{\rm{ khi }}x \le 2}\end{array}} \right.\) liên tục tại \(x = 2\) bằng
Bước 1:
\(\begin{array}{l}f\left( 2 \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = m + 1\\\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} - 1} \right) = 3\end{array}\)
Bước 2:
\( \Rightarrow m + 1 = 3 \Leftrightarrow m = 2\)
Hàm số nào sau đây liên tục trên \(\mathbb{R}\)?
\(f\left( x \right) = {x^4} - 4x\) luôn liên tục trên \(\mathbb{R}\).