Tìm a để hệ phương trình \(\left\{ \begin{array}{l} - \left( {a + 1} \right)x + y = - a - 1\\x + \left( {a - 1} \right)y = 2\end{array} \right.\) có nghiệm duy nhất thỏa mãn \(x - y = 0\)
\(\begin{array}{l}\,\,\,\,\,\,\,\left\{ \begin{array}{l} - \left( {a + 1} \right)x + y = - a - 1\\x + \left( {a - 1} \right)y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - a - 1 + \left( {a + 1} \right)x\\x + \left( {a - 1} \right)\left[ { - a - 1 + \left( {a + 1} \right)x} \right] = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = - a - 1 + \left( {a + 1} \right)x\\x + \left( {a - 1} \right)\left( { - a - 1} \right) + \left( {a - 1} \right)\left( {a + 1} \right)x = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - a - 1 + \left( {a + 1} \right)x\\\left( {{a^2} - 1 + 1} \right)x - {a^2} + 1 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - a - 1 + \left( {a + 1} \right)x\\{a^2}x = {a^2} + 1\end{array} \right.\end{array}\)
Để hệ phương trình có nghiệm duy nhất khi phương trình \({a^2}x = {a^2} + 1\) có nghiệm duy nhất \( \Leftrightarrow a \ne 0\).
Với \(a \ne 0\) ta có \(\left\{ \begin{array}{l}y = - a - 1 + \left( {a + 1} \right)x\\{a^2}x = {a^2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - a - 1 + \left( {a + 1} \right).\dfrac{{{a^2} + 1}}{{{a^2}}}\\x = \dfrac{{{a^2} + 1}}{{{a^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{a + 1}}{{{a^2}}}\\x = \dfrac{{{a^2} + 1}}{{{a^2}}}\end{array} \right.\)
Mà \(x - y = 0 \Rightarrow \dfrac{{{a^2} + 1}}{{{a^2}}} - \dfrac{{a + 1}}{{{a^2}}} = 0 \Leftrightarrow \dfrac{{{a^2} - a}}{{{a^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0\,\,\left( {ktm} \right)\\a = 1\,\,\,\left( {tm} \right)\end{array} \right..\)
Vậy \(a = 1\) thỏa mãn yêu cầu bài toán.
Nghiệm của hệ phương trình \(\left\{ \begin{align} & \sqrt{\frac{1-x}{2y+1}}+\sqrt{\frac{2y+1}{1-x}}=2 \\ & x-y=1 \\\end{align} \right.\) là:
Đk:
\(\left\{ \begin{array}{l}\dfrac{{1 - x}}{{2y + 1}} \ge 0\\\dfrac{{2y + 1}}{{1 - x}} \ge 0\\y \ne \dfrac{{ - 1}}{2}\\x \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{1 - x}}{{2y + 1}} > 0\\\dfrac{{2y + 1}}{{1 - x}} > 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}1 - x > 0\\2y + 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}1 - x < 0\\2y + 1 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < 1\\y > \dfrac{{ - 1}}{2}\end{array} \right.\\\left\{ \begin{array}{l}x > 1\\y < \dfrac{{ - 1}}{2}\end{array} \right.\end{array} \right..\)
\(\left\{ \begin{array}{l}\sqrt {\dfrac{{1 - x}}{{2y + 1}}} + \sqrt {\dfrac{{2y + 1}}{{1 - x}}} = 2\,\,\,\,\left( 1 \right)\\x - y = 1\,\,\,\,\left( 2 \right)\end{array} \right.\)
từ \(\left( 2 \right)\) suy ra: \(x=1+y\) thay vào \(\left( 1 \right)\) ta có:
\(pt \Leftrightarrow \sqrt {\dfrac{{1 - 1 - y}}{{2y + 1}}} + \sqrt {\dfrac{{2y + 1}}{{1 - 1 - y}}} = 2 \Leftrightarrow \sqrt {\dfrac{{ - y}}{{2y + 1}}} + \sqrt {\dfrac{{2y + 1}}{{ - y}}} = 2\,\,\,\,\,\,\,\left( 3 \right)\)
Đặt \(\dfrac{-y}{2y+1}=t\left( t\ge 0 \right)\Rightarrow \dfrac{2y+1}{-y}=\dfrac{1}{t}\) khi đó \(\left( 3 \right)\) có dạng:
\(\sqrt t + \sqrt {\dfrac{1}{t}} = 2 \Leftrightarrow t + 2 + \dfrac{1}{t} = 4 \Leftrightarrow {t^2} - 2t + 1 = 0 \Leftrightarrow {\left( {t - 1} \right)^2} = 0 \Leftrightarrow t = 1\left( {tm} \right)\)
Suy ra: \(\dfrac{-y}{2y+1}=1\Leftrightarrow 2y+1=-y\Leftrightarrow y=\dfrac{1}{3}\,\,\,\left( tm \right)\Rightarrow x=\dfrac{1}{3}+1=\dfrac{4}{3}\,\,\,\left( ktm \right)\)
Vậy hệ phương trình vô nghiệm.
Cho hệ phương trình: \(\left\{ \begin{array}{l}2x - y = 1\\{x^2} + 2xy - {y^2} = 7\end{array} \right.\) , cặp nghiệm của hệ phương trình đã cho là:
\(\begin{array}{l}\,\,\,\,\,\,\,\left\{ \begin{array}{l}2x - y = 1\\{x^2} + 2xy - {y^2} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\{x^2} + 2x\left( {2x - 1} \right) - {\left( {2x - 1} \right)^2} = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\{x^2} + 4{x^2} - 2x - 4{x^2} + 4x - 1 - 7 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\{x^2} + 2x - 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\\left( {x + 4} \right)\left( {x - 2} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\\left[ \begin{array}{l}x + 4 = 0\\x - 2 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ {\left\{ \begin{array}{l}y = 2x - 1\\\left[ \begin{array}{l}x = - 4\\x = 2\end{array} \right.\end{array} \right.} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 4\\y = - 9\end{array} \right.\\\left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\end{array} \right.\end{array}\)
Cho hệ phương trình \(\left\{ \matrix{ x + my = 1 \hfill \cr mx - y = - m \hfill \cr} \right.\)
Hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m là:
\(\displaystyle\left\{ \matrix{x + my = 1 \hfill \cr mx - y = - m \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{x = 1 - my \hfill \cr m(1 - my) - y = - m \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 1 - my \hfill \cr m - {m^2}y - y = - m \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{x = 1 - my \hfill \cr y({m^2} + 1) = 2m \hfill \cr} \right.\)
Do \(\displaystyle{m^2} + 1 \ge 1 \Rightarrow y = {{2m} \over {{m^2} + 1}} \Rightarrow x = 1 - my = 1 - {{2{m^2}} \over {{m^2} + 1}} = {{1 - {m^2}} \over {{m^2} + 1}}\)
Xét \(\displaystyle{x^2} + {y^2} = {{4{m^2}} \over {{{(1 + {m^2})}^2}}} + {{{{(1 - {m^2})}^2}} \over {{{(1 + {m^2})}^2}}} = {{4{m^2} + 1 - 2{m^2} + {m^4}} \over {{{(1 + {m^2})}^2}}} = {{{m^4} + 2{m^2} + 1} \over {{{(1 + {m^2})}^2}}} = {{{{(1 + {m^2})}^2}} \over {{{(1 + {m^2})}^2}}} = 1\)
Vậy \(\displaystyle{x^2} + {y^2} = 1\) không phụ thuộc vào giá trị của m .
Cho hệ phương trình \(\left\{ \begin{array}{l}mx - y = n\\nx + my = 1\end{array} \right.\) (m, n là tham số)
Giải hệ phương trình với \(m = \dfrac{{ - 1}}{2};n = \dfrac{1}{3}\), ta được nghiệm là:
Thay \(m = \dfrac{{ - 1}}{2};n = \dfrac{1}{3}\)ta có hệ phương trình ta có:
\(\left\{ \begin{array}{l}\dfrac{{ - 1}}{2}x - y = \dfrac{1}{3}\\\dfrac{1}{3}x + \dfrac{{ - 1}}{2}y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{ - 1}}{2}x - \dfrac{1}{3}\\\dfrac{1}{3}x + \dfrac{{ - 1}}{2}\left( {\dfrac{{ - 1}}{2}x - \dfrac{1}{3}} \right) = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{ - 1}}{2}x - \dfrac{1}{3}\\\dfrac{7}{{12}}x = \dfrac{5}{6}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{10}}{7}\\y = \dfrac{{ - 22}}{{21}}\end{array} \right.\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right)\) là \(\left( {\dfrac{{10}}{7};\dfrac{{ - 22}}{{21}}} \right)\)
Cho hệ phương trình \(\left\{ \begin{array}{l}mx - y = n\\nx + my = 1\end{array} \right.\) (m, n là tham số)
Xác định các tham số m và n để phương trình có nghiệm \(\left( { - 1;\sqrt 3 } \right)\)Để phương trình có nghiệm \(\left( { - 1;\sqrt 3 } \right)\) thay \(x = - 1;\,\,y = \sqrt 3 \) vào hệ phương trình ta có:
\(\begin{array}{l}\left\{ \begin{array}{l} - m - \sqrt 3 = n\\ - n + \sqrt 3 m = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m - \sqrt 3 = n\\ - \left( { - m - \sqrt 3 } \right) + \sqrt 3 m = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m - \sqrt 3 = n\\\left( {1 + \sqrt 3 } \right)m = 1 - \sqrt 3 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - m - \sqrt 3 = n\\m = \dfrac{{1 - \sqrt 3 }}{{1 + \sqrt 3 }} = - 2 + \sqrt 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n = - \left( { - 2 + \sqrt 3 } \right) - \sqrt 3 = 2 - 2\sqrt 3 \\m = - 2 + \sqrt 3 \end{array} \right.\end{array}\)
Vậy \(\left\{ \begin{array}{l}m = - 2 + \sqrt 3 \\n = 2 - 2\sqrt 3 \end{array} \right.\)