Cho hệ phương trình: \(\left\{ \begin{array}{l}2x - y = 1\\{x^2} + 2xy - {y^2} = 7\end{array} \right.\) , cặp nghiệm của hệ phương trình đã cho là:
Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\,\,\,\left\{ \begin{array}{l}2x - y = 1\\{x^2} + 2xy - {y^2} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\{x^2} + 2x\left( {2x - 1} \right) - {\left( {2x - 1} \right)^2} = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\{x^2} + 4{x^2} - 2x - 4{x^2} + 4x - 1 - 7 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\{x^2} + 2x - 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\\left( {x + 4} \right)\left( {x - 2} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2x - 1\\\left[ \begin{array}{l}x + 4 = 0\\x - 2 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ {\left\{ \begin{array}{l}y = 2x - 1\\\left[ \begin{array}{l}x = - 4\\x = 2\end{array} \right.\end{array} \right.} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 4\\y = - 9\end{array} \right.\\\left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\end{array} \right.\end{array}\)
Hướng dẫn giải:
Với dạng này ta sẽ sử dụng phương pháp thế. Từ phương trình bậc nhất ta biểu diễn ẩn này theo ẩn kia rồi thế vào phương trình còn lại.