Cho biểu thức \(P = \left( {\dfrac{x}{{x + 3}} - \dfrac{2}{{x - 3}} - \dfrac{{{x^2} - 1}}{{9 - x{}^2}}} \right):\left( {2 - \dfrac{{x + 5}}{{x + 3}}} \right)\).
Rút gọn P ta được:
Ta có: \(P = \left( {\dfrac{x}{{x + 3}} - \dfrac{2}{{x - 3}} - \dfrac{{{x^2} - 1}}{{9 - x{}^2}}} \right):\left( {2 - \dfrac{{x + 5}}{{x + 3}}} \right)\).
ĐK: \(x \ne 3;x \ne - 3\); \(x\ne -1\).
\(P = \left( {\dfrac{x}{{x + 3}} - \dfrac{2}{{x - 3}} - \dfrac{{{x^2} - 1}}{{9 - x{}^2}}} \right):\left( {2 - \dfrac{{x + 5}}{{x + 3}}} \right)\)\( = \left( {\dfrac{x}{{x + 3}} - \dfrac{2}{{x - 3}} + \dfrac{{{x^2} - 1}}{{(x - 3)(x + 3)}}} \right):\left( {\dfrac{{2x + 6 - x - 5}}{{x + 3}}} \right)\)\( = \left( {\dfrac{{x(x - 3) - 2(x + 3) + {x^2} - 1}}{{(x + 3)(x - 3)}}} \right):\dfrac{{x + 1}}{{x + 3}}\)\(= \dfrac{{2{x^2} - 5x - 7}}{{(x + 3)(x - 3)}}.\dfrac{{x + 3}}{{x + 1}}\)\( = \dfrac{{2{x^2} + 2x - 7x - 7}}{{(x + 3)(x - 3)}}.\dfrac{{x + 3}}{{x + 1}}\)\(= \dfrac{{(2x - 7)(x + 1)}}{{(x + 3)(x - 3)}}.\dfrac{{x + 3}}{{x + 1}}\)\(= \dfrac{{2x - 7}}{{x - 3}}\)
Vậy \(P = \dfrac{{2x - 7}}{{x - 3}}\) với \(x \ne 3;x \ne - 3;x\ne -1.\)
Cho biểu thức \(P = \left( {\dfrac{x}{{x + 3}} - \dfrac{2}{{x - 3}} - \dfrac{{{x^2} - 1}}{{9 - x{}^2}}} \right):\left( {2 - \dfrac{{x + 5}}{{x + 3}}} \right)\).
Tìm P biết |x| = 1.
Theo câu trước \(P = \dfrac{{2x - 7}}{{x - 3}}\) với \(x \ne 3;x \ne - 3;x\ne -1\)
Ta có: \(|x| = 1 \Leftrightarrow x = \pm 1\)
Kết hợp điều kiện ta chỉ nhận \(x=1\)
Với \(x = 1 \Rightarrow P = \dfrac{{2.1 - 7}}{{1 - 3}} = \dfrac{5}{2}.\)
Vậy \(P = \dfrac{5}{2}\)
Cho biểu thức \(P = \left( {\dfrac{x}{{x + 3}} - \dfrac{2}{{x - 3}} - \dfrac{{{x^2} - 1}}{{9 - x{}^2}}} \right):\left( {2 - \dfrac{{x + 5}}{{x + 3}}} \right)\).
Có bao nhiêu giá trị nguyên của x để P nhận giá trị nguyên.
Theo câu trước \(P = \dfrac{{2x - 7}}{{x - 3}}\) với \(x \ne 3;x \ne - 3;x\ne -1.\)
Ta có: \(P = \dfrac{{2x - 7}}{{x - 3}} = \dfrac{{2(x - 3) - 1}}{{x - 3}} = 2 - \dfrac{1}{{x - 3}}\)
\(P \in Z \Leftrightarrow 2 - \dfrac{1}{{x - 3}} \in \mathbb Z\)\( \Leftrightarrow \dfrac{1}{{x - 3}} \in \mathbb Z\)\( \Leftrightarrow x - 3 \in Ư(1) = {\rm{\{ }} - 1;1\}\).
Bảng giá trị:
Vậy \(x = 2\) hoặc \(x = 4\) thì P nhận giá trị nguyên.