Tính chất hai tiếp tuyến cắt nhau

Câu 21 Trắc nghiệm

Tứ giác  $OCAD$ là hình gì?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi $H$ là giao của $OA$ và $CD$

Xét $\left( O \right)$ có $OA \bot CD$ tại $H$ nên $H$ là trung điểm của $CD$

Xét tứ giác $OCAD$ có hai đường chéo $OA$ và $CD$ vuông góc với nhau và giao nhau tại trung điểm $H$ mỗi đường nên $OCAD$ là hình thoi. 

Câu 22 Trắc nghiệm

Chọn khẳng định đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì tam giác $ABC$ cân tại $A$ có $O$ là tâm đường tròn ngoại tiếp nên đường thẳng $AO \bot BC$

Lại có $AO \bot AE$ (tính chất tiếp tuyến ) nên $AE{\rm{//}}BC$

Câu 23 Trắc nghiệm

Vẽ đường kính $CD$ của $\left( O \right).$ Khi đó

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Theo câu trước ta có $AO \bot BC$ (*)

Xét tam giác $BCD$ có $DC$ là đường kính của $\left( O \right)$ và $B \in \left( O \right)$ nên $\Delta BDC$ vuông tại $B$ hay $BD \bot BC$ (**)

Từ (*) và (**) suy ra $BD{\rm{//}}AO$

Mà $AO$ và $AC$ cắt nhau nên $BD$ và $AC$ không thể song song.

Câu 24 Trắc nghiệm

Chọn khẳng định sai ?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi $H$ là giao của $BC$ với $AO$.

Xét $\left( O \right)$ có hai tiếp tuyến tại $B$ và $C$ cắt nhau tại $A$ nên $AB = AC$ (tính chất)

Lại có $OB = OC$ nên $AO$ là đường trung trực của đoạn $BC$ hay $AO \bot BC$ tại $H$ là trung điểm của $BC$.

Ta chưa kết luận được $H$ có là trung điểm của $AO$ hay không nên đáp án D sai.

Câu 25 Trắc nghiệm

Chọn khẳng định sai ?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi $H$ là giao của $BC$ với $AO$.

Xét $\left( O \right)$ có hai tiếp tuyến tại $B$ và $C$ cắt nhau tại $A$ nên $AB = AC$ (tính chất)

Lại có $OB = OC$ nên $AO$ là đường trung trực của đoạn $BC$ hay $AO \bot BC$ tại $H$ là trung điểm của $BC$.

Ta chưa kết luận được $H$ có là trung điểm của $AO$ hay không nên đáp án D sai.

Câu 26 Trắc nghiệm

Cho $OD = BA = 2R$ . Tính $AC$ và $BD$ theo $R.$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Áp dụng định lý Pytago cho tam giác $BDO$ ta có  $BD = \sqrt {O{D^2} - O{B^2}}  = \sqrt 3 .R$

Mà $MD = BD;MC = AC$ (tính chất hai tiếp tuyến cắt nhau) nên $MD = \sqrt 3 R$

Theo câu trước ta có $MC.MD = O{M^2} $

$\Rightarrow MC = \dfrac{{O{M^2}}}{{MD}} = \dfrac{{{R^2}}}{{\sqrt 3 .R}} = \dfrac{{R\sqrt 3 }}{3}$ nên $AC = \dfrac{{R\sqrt 3 }}{3}$

Vậy $BD = \sqrt 3 R;AC = \dfrac{{\sqrt 3 R}}{3}.$

Câu 27 Trắc nghiệm

Khi đó $MC.MD$ bằng

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét nửa $\left( O \right)$ có $MC$ và $AC$ là hai tiếp tuyến cắt nhau tại $C$ nên $OC$ là phân giác $\widehat {MOA}$ do đó $\widehat {AOC} = \widehat {COM}$

Lại có $MD$ và $BD$ là hai tiếp tuyến cắt nhau tại $D$ nên $OD$ là phân giác $\widehat {MOB}$ do đó $\widehat {DOB} = \widehat {DOM}$

Từ đó $\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD}$$ = \dfrac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \dfrac{{180^\circ }}{2} = 90^\circ $

Nên $\widehat {COD} = 90^\circ $ hay $\Delta COD$ vuông tại $O$ có $OM$ là đường cao nên $MC.MD = O{M^2}$.

Câu 28 Trắc nghiệm

Khi đó $MC.MD$ bằng

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét nửa $\left( O \right)$ có $MC$ và $AC$ là hai tiếp tuyến cắt nhau tại $C$ nên $OC$ là phân giác $\widehat {MOA}$ do đó $\widehat {AOC} = \widehat {COM}$

Lại có $MD$ và $BD$ là hai tiếp tuyến cắt nhau tại $D$ nên $OD$ là phân giác $\widehat {MOB}$ do đó $\widehat {DOB} = \widehat {DOM}$

Từ đó $\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD}$$ = \dfrac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \dfrac{{180^\circ }}{2} = 90^\circ $

Nên $\widehat {COD} = 90^\circ $ hay $\Delta COD$ vuông tại $O$ có $OM$ là đường cao nên $MC.MD = O{M^2}$.

Câu 29 Trắc nghiệm

Tính bán kính đường tròn $(O)$ biết $AB = AC = 20cm,BC = 24cm.$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có tam giác $CKI$ vuông nên \(\widehat {CKI} + \widehat {CIO} = 90^\circ \), lại có \(\widehat {CIK} + \widehat {ICH} = 90^\circ \) mà $CI$ là phân giác \(\widehat {ACB}\) nên $\widehat {ACI} =\widehat {CKO} $.

Có tam giác $COK$ cân tại $O$ nên \(\widehat {ACI} = \widehat {OCK}\)\( (=\widehat {CKO})\)

Nên $\widehat {ICO}+\widehat {ACI}=\widehat {ICO}+\widehat {OCK}  = 90 ^\circ $

Suy ra \(\widehat {ACO} = 90^\circ \) $ \Rightarrow OC \bot AC.$

Ta có $HB = HC$ ($AK$ là trung trực của$BC$ ) \( \Rightarrow HB = \dfrac{{BC}}{2} = 12\).

Theo Pytago ta có \(AH = \sqrt {A{C^2} - H{C^2}}  = 16\)

Lại có  \(\Delta ACH\backsim\Delta COH\) (hai tam giác vuông có $\widehat {COH} = \widehat {ACH}$ vì cùng phụ với $\widehat {HCO}$)

\( \Rightarrow \dfrac{{AH}}{{AC}} = \dfrac{{HC}}{{CO}}\)  \( \Rightarrow CO = \dfrac{{AC.HC}}{{AH}} = 15\) .

Câu 30 Trắc nghiệm

Tâm của đường tròn đi qua bốn điểm $B,I,C,K$ là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì tam giác $ABC$ cân tại $A$ nên $I;K \in $ đường thẳng $AH$ với $\left\{ H \right\} = BC \cap AI$

Ta có $\widehat {HCI} = \dfrac{1}{2}\widehat {HCA};\widehat {KCH} = \dfrac{1}{2}\widehat {xCH}$$ \Rightarrow \widehat {ICK} = \widehat {ICH} + \widehat {HCK} = \dfrac{1}{2}\left( {\widehat {ACH} + \widehat {HCx}} \right) = 90^\circ $

Tương tự ta cũng có $\widehat {IBK} = 90^\circ $

Xét hai tam giác vuông $ICK$ và $IBK$ có $OI = OK = OB = OC = \dfrac{{IK}}{2}$

Nên bốn điểm $B;I;C;K$ nằm trên đường tròn $\left( {O;\dfrac{{IK}}{2}} \right)$.

Câu 31 Trắc nghiệm

Tâm của đường tròn đi qua bốn điểm $B,I,C,K$ là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì tam giác $ABC$ cân tại $A$ nên $I;K \in $ đường thẳng $AH$ với $\left\{ H \right\} = BC \cap AI$

Ta có $\widehat {HCI} = \dfrac{1}{2}\widehat {HCA};\widehat {KCH} = \dfrac{1}{2}\widehat {xCH}$$ \Rightarrow \widehat {ICK} = \widehat {ICH} + \widehat {HCK} = \dfrac{1}{2}\left( {\widehat {ACH} + \widehat {HCx}} \right) = 90^\circ $

Tương tự ta cũng có $\widehat {IBK} = 90^\circ $

Xét hai tam giác vuông $ICK$ và $IBK$ có $OI = OK = OB = OC = \dfrac{{IK}}{2}$

Nên bốn điểm $B;I;C;K$ nằm trên đường tròn $\left( {O;\dfrac{{IK}}{2}} \right)$.

Câu 32 Trắc nghiệm

Kẻ tiếp tuyến với đường tròn tại $C$, tiếp tuyến này cắt đường thẳng $OA$ tại $I$. Biết $OA = R$. Tính $CI$ theo $R$.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét tam giác $COA$ có  $OC = OA = R$ và $OC = AC$ (do $OCAD$ là hình thoi) nên $\Delta COA$ là tam giác đều

$ \Rightarrow \widehat {COI} = 60^\circ .$

Xét tam giác vuông $OCI$ có $CI = OC.\tan 60^\circ  = R\sqrt 3 $.

Vậy $CI = R\sqrt 3 $.

Câu 33 Trắc nghiệm

Tứ giác  $OCAD$ là hình gì?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi $H$ là giao của $OA$ và $CD$

Xét $\left( O \right)$ có $OA \bot CD$ tại $H$ nên $H$ là trung điểm của $CD$

Xét tứ giác $OCAD$ có hai đường chéo $OA$ và $CD$ vuông góc với nhau và giao nhau tại trung điểm $H$ mỗi đường nên $OCAD$ là hình thoi. 

Câu 34 Trắc nghiệm

Tứ giác  $OCAD$ là hình gì?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi $H$ là giao của $OA$ và $CD$

Xét $\left( O \right)$ có $OA \bot CD$ tại $H$ nên $H$ là trung điểm của $CD$

Xét tứ giác $OCAD$ có hai đường chéo $OA$ và $CD$ vuông góc với nhau và giao nhau tại trung điểm $H$ mỗi đường nên $OCAD$ là hình thoi. 

Câu 35 Trắc nghiệm

Tứ giác $ABCE$ là hình gì? 

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì $AE{\rm{//}}BC$ nên $\widehat {EAC} = \widehat {ACB}$ (hai góc ở vị trí so le trong) , lại có $\widehat {ADE} = \widehat {BDC}$ (đối đỉnh) và $AD = DC$

Nên $\Delta ADE = \Delta CDB\left( {g - c - g} \right) $

$\Rightarrow AE = BC$

Tứ giác $AECB$ có $AE = BC;AE{\rm{//}}BC$ nên $AECB$ là hình bình hành.

Câu 36 Trắc nghiệm

Chọn khẳng định đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì tam giác $ABC$ cân tại $A$ có $O$ là tâm đường tròn ngoại tiếp nên đường thẳng $AO \bot BC$

Lại có $AO \bot AE$ (tính chất tiếp tuyến ) nên $AE{\rm{//}}BC$

Câu 37 Trắc nghiệm

Chọn khẳng định đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì tam giác $ABC$ cân tại $A$ có $O$ là tâm đường tròn ngoại tiếp nên đường thẳng $AO \bot BC$

Lại có $AO \bot AE$ (tính chất tiếp tuyến ) nên $AE{\rm{//}}BC$

Câu 38 Trắc nghiệm

Tâm đường tròn nội tiếp của tam giác là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tâm của đường tròn nội tiếp tam giác là giao của các đường phân giác các góc trong tam giác.

Câu 39 Trắc nghiệm

Mỗi một tam giác có bao nhiêu đường tròn bàng tiếp?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đường tròn tiếp xúc với một cạnh của tam giác và tiếp xúc với phần kéo dàicủa hai cạnh còn lại gọi là đường tròn bàng tiếp tam giác.

Với một tam giác có ba đường tròn bàng tiếp.

Câu 40 Trắc nghiệm

Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Chọn  khẳng định sai?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì:

- Điểm đó cách đều hai tiếp điểm.

- Tia kẻ từ điểm đó đi qua tâm là tia phân giác của các góc tạo bởi hai tiếp tuyến.

- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua tiếp điểm.